

Content lists available at [Indonesia Academia Research Society](#)

International Journal of Industrial Engineering, Technology & Operations Management

Journal homepage: ejournals.indoacademia-society.com/ijietom

Original Article

[Check for updates](#)

Integrating Lean Six Sigma and Industry 4.0 to Enhance Manufacturing Productivity in India

Navneet Kumar ^{a,*} and Sachin Saini ^a^a Department of Mechanical Engineering, Faculty of Engineering, RIMT University, Mandi Gobindgarh, Punjab 147301, India.* Correspondence: principalpattamehlog@gmail.com (N.K.)

Article History

Received 20 March 2025

Revised 28 May 2025

Accepted 8 June 2025

Available Online 30 June 2025

Abstract

Small and medium-scale manufacturing enterprises (SMEs) in India face increasing competitive pressure due to rising material costs, stringent quality standards, and limited operational resources. Enhancing productivity while maintaining cost efficiency and delivery reliability remains a significant challenge. This study investigates the impact of integrating Lean Six Sigma (LSS), Total Productive Maintenance (TPM), selective Industry 4.0 technologies, and energy management practices to improve manufacturing performance in an Indian transformer manufacturing SME. Using a structured case study approach, the research implemented a phased Operational Excellence (OPEX) framework over a six-month period. Value Stream Mapping identified process bottlenecks and excessive non-value-added time, while Six Sigma tools addressed quality variation in the coil winding process. TPM initiatives improved equipment reliability, and a low-cost IoT vibration sensor enabled predictive maintenance. Additionally, an energy audit guided targeted efficiency improvements. The results demonstrate substantial performance gains: production lead time decreased by 28.6% (from 28 to 20 days), coil winding defects were reduced by 60% (from 8.5% to 3.4%), on-time delivery improved from 55% to 85%, Overall Equipment Effectiveness increased by 35% (from 52% to 70.2%), and energy cost per unit declined by 20%. The findings confirm that a pragmatic, integrated OPEX framework can deliver multidimensional productivity gains without requiring large-scale capital investment. This study contributes to the manufacturing and operations management literature by providing empirical evidence that selective Industry 4.0 adoption can effectively complement Lean Six Sigma in SME environments, offering a scalable pathway to sustainable, digitally enabled manufacturing excellence.

Copyright: © 2025 by the authors. Submitted for possible open-access publication under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

The global electrical transformer manufacturing industry operates in an increasingly challenging environment characterized by intense market competition, volatile raw material prices, stringent regulatory standards, and rising customer expectations for quality and delivery reliability. These pressures are particularly pronounced in emerging economies such as India, where small and medium-scale enterprises (SMEs) constitute a significant portion of the manufacturing ecosystem and play a vital role in industrial growth, employment generation, and supply chain resilience. Despite their importance, transformer manufacturing SMEs often struggle with limited financial resources, inadequate technological infrastructure, and persistent operational inefficiencies, leading to high levels of waste,

rework, downtime, and quality variability (Jou et al., 2024; Prashar, 2018).

Enhancing manufacturing productivity has therefore become a strategic imperative for SMEs seeking long-term sustainability and competitiveness. However, productivity improvement in this sector is constrained by fragmented production systems, low process visibility, equipment-related failures, and a lack of standardized problem-solving practices. Traditional improvement initiatives are often reactive rather than systematic, yielding incremental gains that are difficult to sustain over time. As a result, SMEs increasingly recognize the need for structured operational frameworks that can simultaneously address efficiency, quality, cost, and delivery performance.

Operational Excellence (OPEX) methodologies, particularly Lean Manufacturing and Six Sigma, have

been widely adopted in large-scale industries to eliminate non-value-added activities, reduce process variability, and enhance overall performance. Lean Manufacturing focuses on waste reduction and flow optimization, while Six Sigma emphasizes defect reduction through data-driven decision-making. Despite their proven effectiveness, the adoption of these methodologies among SMEs remains limited, largely due to perceptions of complexity, high implementation costs, skill shortages, and resistance to organizational change (Panayiotou et al., 2022; Xiang & Chin, 2021). Nevertheless, emerging empirical evidence suggests that when these methodologies are adapted to the SME context and implemented in an integrated manner, they can generate substantial operational and financial benefits (Saini & Singh, 2022; Gaikwad & Sunnapwar, 2024).

In parallel, the advent of Industry 4.0 has introduced advanced digital technologies—such as the Internet of Things (IoT), cyber-physical systems, data analytics, and predictive maintenance—that offer new opportunities to enhance manufacturing performance. While full-scale digital transformation may be impractical for resource-constrained SMEs, selective and strategic adoption of Industry 4.0 tools has been shown to complement traditional OPEX practices by improving process transparency, equipment reliability, and decision-making capabilities (Antony et al., 2022; Çınar et al., 2020). In particular, IoT-enabled predictive maintenance enables early detection of equipment failures, thereby reducing unplanned downtime and supporting continuous improvement initiatives.

Recent research increasingly advocates integrating Lean Six Sigma with Industry 4.0 technologies as a holistic approach to productivity enhancement. Lean Six Sigma provides the structured methodology and problem-solving discipline, while Industry 4.0 technologies supply real-time data and advanced analytical capabilities to sustain improvements. Tools such as Value Stream Mapping facilitate the identification of process bottlenecks and waste (Seth et al., 2017), Total Productive Maintenance strengthens equipment effectiveness and operator involvement (Sharma et al., 2006), and predictive analytics enhances maintenance planning and operational reliability (Badawi et al., 2022). However, empirical studies demonstrating the integration of such frameworks within SME contexts, particularly in the Indian transformer manufacturing sector, remain limited.

Against this backdrop, the present study addresses this research gap by examining the implementation of an integrated Lean Six Sigma and Industry 4.0 framework in an Indian transformer manufacturing SME, referred to as “ABC Transformers.” By combining Value Stream Mapping, Total Productive Maintenance, Lean Six Sigma tools, and IoT-based predictive analytics, the study aims to demonstrate how a pragmatic and context-specific integration of traditional OPEX methodologies and digital

technologies can deliver measurable improvements in manufacturing productivity, quality performance, and operational stability (Dweiri & Ishaq, 2020; Badawi et al., 2022). The findings contribute to both academic discourse and managerial practice by offering evidence-based insights into scalable productivity-enhancement strategies for SMEs operating under resource constraints.

2. Literature Review

This study is anchored in a multidisciplinary body of literature encompassing Lean Manufacturing, Six Sigma, Total Productive Maintenance (TPM), Industry 4.0, and energy efficiency management. Together, these paradigms form the theoretical foundation for an integrated operational excellence (OPEX) framework to enhance manufacturing productivity in resource-constrained small- and medium-scale enterprises (SMEs).

2.1. Lean Manufacturing and Waste Elimination

Lean Manufacturing is a systematic approach to maximizing customer value by eliminating non-value-added activities, commonly known as the seven wastes: overproduction, waiting, transportation, excess inventory, motion, overprocessing, and defects. By streamlining process flow and improving workplace organization, Lean enables firms to enhance productivity, reduce costs, and improve delivery performance. Among Lean tools, Value Stream Mapping (VSM) is particularly pivotal, as it provides a holistic visualization of material and information flows across the production system, enabling the identification of bottlenecks, delays, and inefficiencies (Rane et al., 2015).

In the context of Indian manufacturing SMEs, Lean adoption has demonstrated considerable potential despite structural and financial limitations. Empirical studies indicate that VSM-driven interventions lead to significant reductions in lead time, work-in-process inventory, and production waste (Saini & Singh, 2022; Kumar & Shankar, 2022). However, the literature also highlights that Lean implementation in SMEs often requires simplification, employee engagement, and phased deployment to ensure sustainability. These findings underscore the relevance of Lean as a foundational productivity improvement strategy in transformer manufacturing environments characterized by batch production and process variability.

2.2. Six Sigma for Quality Control and Process Stability

While Lean emphasizes flow and waste elimination, Six Sigma focuses on reducing process variation and defects through a structured, data-driven methodology. The Define-Measure-Analyze-Improve-Control (DMAIC) framework provides a systematic roadmap for identifying root causes of quality issues and

implementing statistically validated solutions (Antony et al., 2016). Six Sigma has been widely applied in high-volume and quality-critical industries, where defect reduction directly translates into cost savings and customer satisfaction.

Studies in power equipment, cable manufacturing, and related electrical industries demonstrate the applicability of Six Sigma tools, such as cause-and-effect analysis, hypothesis testing, and control charts, to processes similar to transformer manufacturing (Sony, 2019; Dweiri & Ishaq, 2020). For SMEs, Six Sigma helps institutionalize a problem-solving discipline and performance measurement, though challenges related to skill availability and data collection persist. When integrated with Lean principles, Lean Six Sigma (LSS) enables organizations to simultaneously address efficiency and quality dimensions of productivity, making it particularly suitable for complex manufacturing systems.

2.3. Total Productive Maintenance and Equipment Effectiveness

Equipment reliability is a critical determinant of productivity in capital-intensive manufacturing sectors such as transformer production. Total Productive Maintenance (TPM) is an OPEX philosophy that aims to maximize Overall Equipment Effectiveness (OEE) through proactive and preventive maintenance strategies involving operators, maintenance staff, and management. TPM emphasizes autonomous maintenance, planned maintenance, focused improvement, and skill development to reduce breakdowns, minor stoppages, and speed losses (Sharma et al., 2006).

Empirical evidence suggests that TPM implementation in SMEs leads to substantial improvements in equipment availability, performance efficiency, and product quality (Xiang & Chin, 2021). In resource-constrained environments, TPM is particularly effective when integrated with Lean initiatives, as it supports stable process flow and minimizes unplanned downtime. For transformer manufacturing SMEs, where equipment failures can cause significant production delays and rework, TPM is a critical enabler of sustainable productivity improvements.

2.4. Industry 4.0 and Manufacturing Digitalization

Industry 4.0 represents a paradigm shift toward smart manufacturing by integrating digital technologies such as the Internet of Things (IoT), big data analytics, and cyber-physical systems. While large firms often pursue comprehensive digital transformation, SMEs face barriers to it due to costs, technological complexity, and organizational readiness. Recent literature emphasizes that incremental and targeted adoption of Industry 4.0 technologies can yield substantial benefits without requiring extensive capital investment (Chiu et al., 2020).

Low-cost IoT sensors for condition monitoring and predictive maintenance offer a feasible entry point for SMEs, enabling real-time data acquisition and early detection of equipment abnormalities (Badawi et al., 2022). Moreover, data-driven decision-making supported by digital tools enhances transparency in processes, maintenance planning, and continuous improvement initiatives (Helo & Hao, 2022). When aligned with Lean Six Sigma practices, Industry 4.0 technologies serve as enablers, sustaining and amplifying productivity gains by providing timely, accurate, and actionable operational data.

2.5. Energy Efficiency and Energy Cost Deployment

Energy consumption represents a significant cost component in manufacturing operations, particularly in energy-intensive processes such as transformer production. Energy Cost Deployment (ECD) is a Lean-based analytical approach that systematically identifies energy losses across processes and links them to specific improvement opportunities (Braglia et al., 2020). By integrating energy performance into productivity improvement initiatives, ECD enables firms to achieve both economic and environmental benefits.

Studies highlight that structured energy management practices can lead to substantial reductions in energy intensity and operating costs, especially in SMEs where energy inefficiencies often remain hidden (Worrell, 2008). Incorporating ECD into an OPEX framework aligns productivity improvement with sustainability objectives, reinforcing the relevance of energy efficiency as a strategic dimension of manufacturing performance.

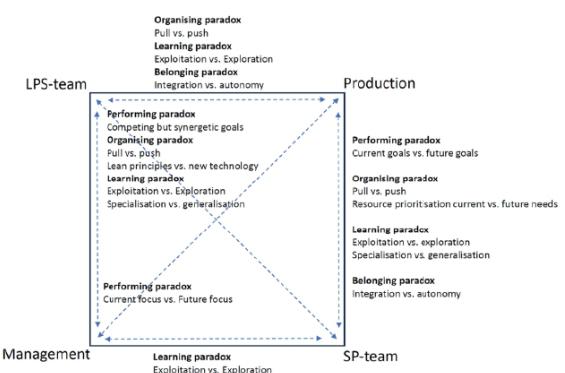


Figure 1. The proposed integrated OPEX framework.

Source: Peter et al. (2024).

The reviewed literature suggests that no single methodology is sufficient to address the multifaceted productivity challenges faced by manufacturing SMEs. Lean Manufacturing provides waste elimination and flow optimization; Six Sigma ensures process stability and quality control; TPM enhances equipment effectiveness; Industry 4.0 enables real-time monitoring and predictive capabilities; and ECD integrates energy efficiency into operational decision-making. While each approach has

been studied independently, empirical research on their integrated application, particularly within Indian transformer manufacturing SMEs remains limited.

Accordingly, this study proposes a cohesive, phased OPEX framework that integrates Lean Six Sigma, TPM, Industry 4.0 technologies, and energy efficiency tools in a manner tailored to the SME context. By synthesizing established operational methodologies with emerging digital technologies, the framework aims to deliver sustainable improvements in manufacturing productivity, quality performance, equipment reliability, and energy efficiency.

3. Materials and Methods

This study adopted an in-depth case study approach to examine the application of an integrated Lean Six Sigma and Industry 4.0 framework in a small-scale Indian transformer manufacturing SME, referred to as "ABC Transformers" to preserve confidentiality. The firm employs approximately 150 workers, reports annual turnover below INR 250 crores, and specializes in the production of distribution transformers with a capacity of up to 5 MVA.

Prior to implementation, the company faced persistent operational challenges, including a 55% on-time delivery rate, an 8.5% coil winding defect rate, and frequent machine breakdowns that disrupted production flow. The improvement initiative commenced with a diagnostic phase combining Lean and Six Sigma principles, during which a current-state Value Stream Map (VSM) was developed to visualize material and information flows across the production system.

The VSM revealed an excessive production lead time of 28 days, of which only 18 hours were value-added, with coil winding and oil testing identified as critical bottleneck processes. Concurrently, detailed operational data, including process parameters, defect frequencies, machine downtime records, and energy consumption figures, were systematically collected to establish baseline performance levels. Overall Equipment Effectiveness (OEE) analysis of the coil winding machine indicated a low baseline value of 52%, driven by limited availability (65%), moderate performance efficiency (80%), and quality losses (85%).

In the subsequent analytical phase, root causes of inefficiency and quality variation were identified using a cause-and-effect (fishbone) diagram, which highlighted deficiencies related to manpower skills, inconsistent operating methods, equipment reliability issues, and delayed manual inspection practices. Based on these findings, an integrated set of improvement interventions was implemented. Lean-based layout modifications were introduced to enhance process flow, and a Kanban system was deployed to regulate raw material inventory, particularly copper and core steel.

Six Sigma tools were applied through standardizing operating procedures for coil winding and developing a

poka-yoke jig to prevent assembly errors during core installation. To address equipment-related losses, Total Productive Maintenance practices were implemented, including operator-led autonomous maintenance and a structured preventive maintenance schedule. In parallel, selective Industry 4.0 adoption was achieved by installing a low-cost vibration sensor on the winding machine, enabling condition monitoring and predictive maintenance.

An energy-efficiency initiative complemented these efforts, involving a detailed energy audit, replacing inefficient motors with high-efficiency alternatives, and rectifying compressed air leaks. Finally, to ensure the sustainability of performance improvements, control mechanisms such as visual management boards, statistical control charts, and revised training programs were institutionalized, embedding continuous monitoring and standardized work practices into routine operations.

4. Results and Discussion

The key operational performance indicators were systematically measured over a six-month period to evaluate the impact of the integrated Lean Six Sigma and Industry 4.0 implementation, and the comparative outcomes are presented in Table 1

Table 1. Summary of key performance improvement

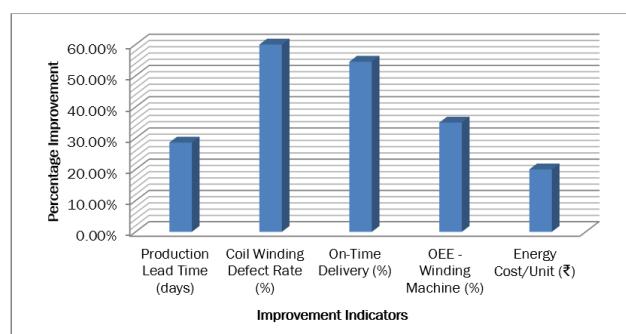
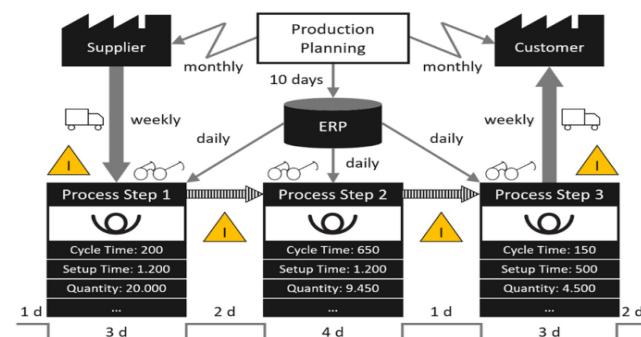

Performance Metric	Before	After	% Improvement
Production Lead Time (days)	28	20	28.6%
Coil Winding Defect Rate (%)	8.5	3.4	60.0%
On-Time Delivery (%)	55	85	54.5%
OEE - Winding Machine (%)	52	70.2	35.0%
Energy Cost/Unit (₹)	1,250	1,000	20.0%

Table 1 presents the comparative performance of key operational indicators before and after implementing the integrated Lean Six Sigma and Industry 4.0 framework over a six-month period. The results indicate substantial improvements across productivity, quality, delivery reliability, equipment effectiveness, and energy efficiency, demonstrating the comprehensive impact of the phased OPEX intervention.

The production lead time was reduced from 28 days to 20 days, resulting in a 28.6% improvement. This reduction signifies a significant enhancement in process flow following the elimination of non-value-added activities identified through Value Stream Mapping (VSM). The redesign of the production layout and the implementation of a Kanban-based inventory control system improved material movement, reduced waiting time, and enhanced synchronization between upstream and downstream operations. The narrowing of the gap between total lead time and value-added time indicates a shift toward a more efficient and streamlined production system.

The coil winding defect rate decreased markedly from 8.5% to 3.4%, representing a 60.0% improvement. This substantial reduction highlights the effectiveness of Six Sigma interventions, including standardized operating procedures, enhanced operator training, and the introduction of a poka-yoke device for core assembly. By addressing variation in winding tension and improving inspection timeliness, the company achieved greater process stability and higher first-pass yield, thereby reducing rework, material wastage, and associated costs.

On-time delivery performance improved from 55% to 85%, amounting to a 54.5% increase. This improvement reflects the combined effect of shorter lead times, improved equipment reliability, and lower defect rates. The integration of Lean flow optimization with Total Productive Maintenance (TPM) and predictive maintenance significantly reduced unplanned downtime, enabling more accurate production scheduling and reliable order fulfillment. Improved delivery performance enhances customer satisfaction and strengthens competitive positioning in the transformer manufacturing market.


Figure 2. Diagram of Performance Improvement

The Overall Equipment Effectiveness (OEE) of the winding machine increased from 52% to 70.2%, demonstrating a 35.0% improvement. The initial OEE losses were largely attributable to limited availability due to breakdowns and ageing components. Through the implementation of autonomous and preventive maintenance practices, along with the installation of a low-cost vibration sensor for condition monitoring,

equipment availability and operational stability improved considerably. Achieving an OEE above 70% represents a meaningful transition toward proactive maintenance management and improved manufacturing discipline.

The energy cost per unit declined from ₹1,250 to ₹1,000, resulting in a 20.0% reduction. This outcome resulted from a structured energy audit, replacement of inefficient motors with high-efficiency alternatives, and correction of compressed air leaks. By incorporating Energy Cost Deployment principles, the firm systematically identified and eliminated energy losses, thereby reducing operational expenses while simultaneously improving environmental sustainability.

The result demonstrates that the integrated OPEX framework generated multidimensional performance improvements rather than isolated gains. The simultaneous enhancement of productivity, quality, delivery reliability, equipment effectiveness, and energy efficiency confirms the synergistic value of combining Lean Six Sigma, TPM, selective Industry 4.0 adoption, and energy management practices within an SME context. The magnitude of these improvements over a relatively short six-month period underscores the practical feasibility and strategic relevance of the proposed framework for transformer manufacturing SMEs in India.

Figure 3. Comparison of the Current-State and Future-State Value Stream Maps (VSM)

Figure 3 illustrates a simplified comparison of the current-state and future-state Value Stream Maps (VSM), highlighting the reduction in total production lead time from 28 days to 20 days following the implementation of the integrated Lean Six Sigma and Industry 4.0 framework. The visual representation captures the flow of materials and information from suppliers to customers through three major process steps, coordinated via production planning and ERP integration. It provides both a macro-level systems perspective and a micro-level view of process performance.

In the current-state configuration (pre-implementation), the value stream revealed significant inefficiencies across the production chain. Although actual cycle times within each process step were relatively short compared to total elapsed time,

substantial waiting periods, inventory buffers, and inter-process delays contributed to an overall lead time of 28 days. For instance, Process Step 1, Process Step 2 (coil winding), and Process Step 3 collectively accounted for only a fraction of value-added time, while the remaining duration consisted of queue time, material staging, batch transfers, and scheduling gaps. The coil-winding stage, characterized by high setup time and a high defect rate, emerged as a critical bottleneck. Information flow between production planning, ERP, and shop-floor operations was largely periodic (monthly/weekly), limiting responsiveness and real-time coordination.

The future-state VSM demonstrates a more synchronized and streamlined production system. Through layout redesign, Kanban-based pull control, standardized operating procedures, and improved maintenance practices, non-value-added waiting time between processes was substantially reduced. The implementation of Total Productive Maintenance (TPM) and predictive condition monitoring minimized unplanned downtime, while Six Sigma interventions reduced defect-induced rework loops. Consequently, inter-process delays of 2-3 days were compressed, inventory buffers were lowered, and material flow became more continuous. The cumulative effect of these improvements reduced total lead time by 28.6%, from 28 days to 20 days.

The observed reduction in lead time is consistent with empirical evidence from similar Lean Six Sigma implementations in manufacturing environments, which report significant gains in flow efficiency and defect reduction (Sharma et al., 2022; Dweiri & Ishaq, 2020). The 60% reduction in coil winding defects further reinforces this alignment, as eliminating process variation directly reduces rework cycles and shortens throughput time.

From an equipment performance perspective, Figure 4 indirectly reflects the impact of improved machine reliability on flow stability. The 35% improvement in Overall Equipment Effectiveness (OEE) confirms the role of TPM, combined with active operator involvement, in enhancing the availability, performance, and quality dimensions of equipment utilization (Xiang & Chin, 2021). By stabilizing the bottleneck process, production variability was reduced, enabling smoother downstream operations and improved schedule adherence.

Energy efficiency gains are also embedded within the improved value stream. Reduced waiting time and fewer breakdowns lower idle energy consumption, while targeted actions such as high-efficiency motor installation and compressed air leak rectification contributed to a 20% reduction in energy cost per unit. This outcome validates the effectiveness of integrating lean-energy principles and structured energy audits within operational improvement programs (Braglia et al., 2020).

Importantly, the result also reflects enhanced information flow through ERP-supported daily monitoring

and the installation of a low-cost IoT vibration sensor for predictive maintenance. Rather than pursuing full-scale digital transformation, the company adopted a focused digital intervention targeting the primary bottleneck machine. This pragmatic approach exemplifies the “low-cost, high-effect” philosophy for SME digitalization advocated by Panayiotou et al. (2022) and Antony et al. (2022), demonstrating that selective Industry 4.0 integration can amplify Lean Six Sigma benefits without imposing excessive capital burden.

The result visually substantiates the systemic nature of the improvement initiative. The transformation from a push-oriented, delay-prone production system to a more synchronized, pull-driven, and digitally supported value stream illustrates how integrating Lean, Six Sigma, TPM, energy management, and Industry 4.0 tools generates synergistic performance gains. The reduction in lead time from 28 to 20 days serves not only as a quantitative productivity indicator but also as evidence of enhanced operational discipline, process stability, and organizational learning within the SME context.

5. Conclusions

This study set out to examine whether integrating Lean Six Sigma, Total Productive Maintenance (TPM), selective Industry 4.0 technologies, and energy management practices could significantly enhance manufacturing productivity in an Indian transformer manufacturing SME. The central research question guiding the study was whether a phased, resource-sensitive Operational Excellence (OPEX) framework could deliver measurable improvements in productivity, quality, equipment effectiveness, delivery reliability, and energy efficiency within a small-scale enterprise context.

The findings strongly support this proposition. Over a six-month implementation period, the company achieved a 28.6% reduction in production lead time (from 28 to 20 days), a 60% reduction in coil winding defects (from 8.5% to 3.4%), a 54.5% improvement in on-time delivery performance (from 55% to 85%), a 35% increase in Overall Equipment Effectiveness (from 52% to 70.2%), and a 20% reduction in energy cost per unit. These results demonstrate that the integrated framework did not produce isolated improvements but rather generated systemic operational transformation across multiple performance dimensions. Accordingly, the underlying hypothesis that integrating Lean Six Sigma with TPM, energy-efficiency tools, and targeted Industry 4.0 adoption would significantly enhance SME manufacturing performance is empirically supported.

The significance of these findings lies in three major contributions. First, from a theoretical perspective, the study advances the literature by demonstrating the synergistic interaction between traditional OPEX methodologies and emerging digital technologies within an SME environment. While prior studies have examined Lean, Six Sigma, TPM, or Industry 4.0 independently, this

research provides empirical evidence that a carefully sequenced integration of these approaches amplifies their collective impact. The case confirms that Industry 4.0 technologies, when applied selectively and strategically, serve as enablers rather than replacements for foundational process improvement methodologies.

Second, from a managerial standpoint, the findings offer a pragmatic roadmap for SMEs operating under financial and technological constraints. The study illustrates that large-scale capital investment is not a prerequisite for digital-enabled productivity gains. Instead, a “low-cost, high-effect” approach, such as deploying a single IoT vibration sensor for predictive maintenance, can significantly enhance equipment reliability and sustain Lean Six Sigma improvements. This insight is particularly relevant for manufacturing SMEs in emerging economies seeking to compete in quality-sensitive and cost-pressured markets.

Third, including energy efficiency within the OPEX framework broadens the definition of productivity to encompass sustainability and cost resilience. The 20% reduction in energy cost per unit highlights the strategic importance of integrating lean-energy principles into operational transformation initiatives. This contributes to the evolving discourse on sustainable manufacturing and Industry 4.0-enabled resource optimization.

The study concludes that integrating Lean Six Sigma with TPM, targeted digitalization, and structured energy management constitutes an effective and scalable pathway for enhancing manufacturing productivity in Indian SMEs. The findings reinforce the argument that operational excellence and digital transformation should not be pursued as parallel initiatives but as mutually reinforcing strategies. Future research may extend this framework across multiple case studies or conduct longitudinal analyses to examine long-term sustainability and scalability across different manufacturing sectors.

Author Contributions: Conceptualization, N.K. and S.S.; methodology, N.K.; software, N.K.; validation, S.S.; formal analysis, N.K.; investigation, N.K. and S.S.; resources, N.K.; data curation, S.S.; writing—original draft preparation, N.K.; writing—review and editing, S.S.; visualization, N.K.; project administration, N.K.; funding acquisition, N.K. All authors have read and agreed to the published version of the manuscript.

Author Initials

N.K. - Navneet Kumar
S.S. - Sachin Saini

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Inform Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank RMIT University, India, for supporting this research and publication. We also thank the reviewers for their constructive comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

Agarwal, N., & Brem, A. (2015). Strategic business transformation through technology convergence: implications from General Electric's industrial internet initiative. *International Journal of Technology Management*, 67(2-4), 196-214.

Ajayi, A. O., Maryjane, O. C., Emmanuel, A., & Nwanevu, C. (2025). Sustainability in transformer manufacturing: The role of renewable energy in automating coil winding machines.

Ali, Z. A., Zain, M., Hasan, R., Al Salman, H., Alkhamees, B. F., & Almisned, F. A. (2025). Circular economy advances with artificial intelligence and digital twin: Multiple-case study of Chinese industries in agriculture. *Journal of the Knowledge Economy*, 16(1), 2192-2228.

Al-Saggaf, H. A. (1997). Application of TQM at SCECO-EAST: a case study. *Journal of Quality in Maintenance Engineering*, 3(1), 40-54.

Antony, J., Gijo, E. V., Kumar, V., & Ghadge, A. (2016). A multiple case study analysis of Six Sigma practices in Indian manufacturing companies. *International Journal of Quality & Reliability Management*, 33(8), 1138-1149.

Antony, J., Sony, M., Furterer, S., McDermott, O., & Pepper, M. (2022). Quality 4.0 and its impact on organizational performance: an integrative viewpoint. *The TQM Journal*, 34(6), 2069-2084.

Ashkezari, A. D., Ma, H., Saha, T. K., & Cui, Y. (2014). Investigation of feature selection techniques for improving efficiency of power transformer condition assessment. *IEEE Transactions on Dielectrics and Electrical Insulation*, 21(2), 836-844.

Azad, M. A. (2025). Evaluating the Role of Lean Manufacturing in Reducing Production Costs and Enhancing Efficiency in Textile Mills. *Authorea Preprints*.

Badawi, M., Ibrahim, S. A., Mansour, D. E. A., El-Faraskoury, A. A., Ward, S. A., Mahmoud, K., ... & Darwish, M. M. (2022). Reliable estimation for health index of transformer oil based on novel combined predictive maintenance techniques. *IEEE access*, 10, 25954-25972.

Berjis, N., Shirouyehzad, H., & Jouzdani, J. (2020). A new approach to determine the weights of project activities using data envelopment analysis: a case of Mobarakeh steel company. *International Journal of Managing Projects in Business*, 13(6), 1187-1217.

Braglia, M., Castellano, D., Gabbielli, R., & Marazzini, L. (2020). Energy Cost Deployment (ECD): A novel lean approach to tackling energy losses. *Journal of Cleaner Production*, 246, 119056.

Chen, M., Li, Q., Roberts, C., Hillmansen, S., Tricoli, P., Zhao, N., & Krastev, I. (2016). Modelling and performance analysis of advanced combined co-phase traction power supply system in electrified railway. *IET Generation, Transmission & Distribution*, 10(4), 906-916.

Chiu, M. C., Tsai, C. D., & Li, T. L. (2020). An integrative machine learning method to improve fault detection and productivity performance in a cyber-physical system. *Journal of Computing and Information Science in Engineering*, 20(2), 021009.

Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. *Sustainability*, 12(19), 8211.

Dweiri, F., & Ishaq, S. (2020). Cable insulation productivity improvement using Lean Six Sigma. *International Journal of Productivity and Quality Management*, 30(4), 488-508.

El Jaouhari, A., Alhilali, Z., Arif, J., Fellaki, S., Amejwal, M., & Azzouz, K. (2022). Demand forecasting application with regression and iot based inventory management system: a case study of a semiconductor manufacturing company. *International journal of engineering research in africa*, 60, 189-210.

El-Thalji, I., Alsyouf, I., & Ronsten, G. (2009). A model for assessing operation and maintenance cost adapted to wind farms in cold climate environment: based on onshore and offshore case studies.

Gaikwad, L. M., & Sunnapwar, V. K. (2024). Validation of Lean-Green-Six Sigma practice model for improving performance and competitiveness in an Indian manufacturing industry. *International Journal of System Assurance Engineering and Management*, 15(7), 3508-3521.

Galitsky, C. (2008). Energy efficiency improvement and cost saving opportunities for the vehicle assembly industry: an energy star guide for energy and plant managers.

Gijo, E. V., & Sarkar, A. (2013). Application of Six Sigma to improve the quality of the road for wind turbine installation. *The TQM Journal*, 25(3), 244-258.

Gladysz, B., & Kluczek, A. (2017). A framework for strategic assessment of far-reaching technologies: A case study of Combined Heat and Power technology. *Journal of Cleaner Production*, 167, 242-252.

Gomaa, A. H. (2025). Achieving operational excellence in manufacturing supply chains using lean six sigma: a case study approach. *International Journal of Lean Six Sigma*.

Haldar, U., Alam, G. T., Rahman, H., Miah, M. A., Chakraborty, P., Saimon, A. S. M., ... & Manik, M. M. T. G. (2025). AI-Driven Business Analytics for Economic Growth Leveraging Machine Learning and MIS for Data-Driven Decision-Making in the US Economy. *Journal of Posthumanism*, 5(4), 932-957.

Han, C., & Yang, L. (2024). Financing and management strategies for expanding green development projects: A case study of energy corporation in China's renewable energy sector using machine learning (ML) modeling. *Sustainability*, 16(11), 4338.

Hebo, P., & Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: An exploratory case study. *Production planning & control*, 33(16), 1573-1590.

Heshmati, A. (2003). Productivity growth, efficiency and outsourcing in manufacturing and service industries. *Journal of economic surveys*, 17(1), 79-112.

Jou, Y. T., Lin, M. C., Silitonga, R. M., Lu, S. Y., & Hsu, N. Y. (2024). A systematic model to improve productivity in a transformer manufacturing company: A simulation case study. *Applied Sciences*, 14(2), 519.

Kaplan, R. S. (1983). Measuring manufacturing performance: a new challenge for managerial accounting research. In *Readings in accounting for management control* (pp. 284-306). Boston, MA: Springer US.

Karandikar, H., Puntambekar, U., Yagnik, J., & Joshi, D. (2025). Case study on process improvement in a transformer oil testing laboratory using value stream mapping for improving service time. *International Journal of Productivity and Quality Management*, 44(4), 528-546.

Karimi, H., Niknam, T., Dehghani, M., Ghiasi, M., Ghasemigarpachi, M., Padmanaban, S., ... & Aliev, H. (2021). Automated distribution networks reliability optimization in the presence of DG units considering probability customer interruption: A practical case study. *IEEE Access*, 9, 98490-98505.

Khan, M. A., & Tonoy, A. A. R. (2024). Lean Six Sigma Applications in Electrical Equipment Manufacturing: A Systematic Literature Review. *Aleem Al Razee, LEAN SIX SIGMA APPLICATIONS IN ELECTRICAL EQUIPMENT*.

Kumar, R., & Shinde, S. (2019). Simulation as decision support tool: A case study with data analysis, VSM and simulation applied to an ETO system.

Kumar, U., & Shankar, R. (2022). Application of Value Stream Mapping for Lean Operation: An Indian Case Study of a Dairy Firm. *Global business review*, 09721509221113002.

Manju, M., Nagarajan, R. V., Satheesh Kumar, P., & Jeganathan, M. (2020). Environmental quality and economical study on electrical and electronic industry-A case study. *International Journal of Advanced Research in Engineering and Technology*, 11(2), 266-275.

Martinez-Monseco, F. J. (2020). An approach to a practical optimization of reliability centered maintenance. Case study: power transformer in hydro power plant. *Journal of Applied Research in Technology & Engineering*, 1(1), 37-47.

Martins, L., Silva, F. J. G., Pimentel, C., Casais, R. B., & Campilho, R. D. S. G. (2020). Improving preventive maintenance management in an energy solutions company. *Procedia Manufacturing*, 51, 1551-1558.

Melo Sonego, D., Pinheiro de Lima, E., & Gouvea da Costa, S. E. (2024, July). Analysis of Operations Strategies in an Electricity Distribution Company. In *International Conference of Production Research–Americas* (pp. 419-429). Cham: Springer Nature Switzerland.

Mendes, D., Gaspar, P. D., Charrua-Santos, F., & Navas, H. (2023). Synergies between lean and Industry 4.0 for enhanced maintenance management in sustainable operations: A model proposal. *Processes*, 11(9), 2691.

Nadeem, S. P., Garza-Reyes, J. A., & Anosike, A. I. (2025). A C-Lean framework for deploying Circular Economy in manufacturing SMEs. *Production Planning & Control*, 36(5), 650-670.

Nadimuthu, L. P. R., Victor, K., Basha, C. H., Mariprasath, T., Dhanamjayulu, C., Padmanaban, S., & Khan, B. (2021). Energy conservation approach for continuous power quality improvement: A case study. *IEEE Access*, 9, 146959-146969.

Nappi, V., & Kelly, K. (2022). Proposing a performance framework for innovation measurement: an exploratory case-based research. *International journal of productivity and performance management*, 71(5), 1829-1853.

Nilsson, J., & Bertling, L. (2007). Maintenance management of wind power systems using condition monitoring systems—life cycle cost analysis for two case studies. *IEEE Transactions on energy conversion*, 22(1), 223-229.

Panayiotou, N. A., Stergiou, K. E., & Panagiotou, N. (2022). Using Lean Six Sigma in small and medium-sized enterprises for low-cost/high-effect improvement initiatives: a case study. *International Journal of Quality & Reliability Management*, 39(5), 1104-1132.

Peter E. Johansson, Jessica Bruch, Koteshwar Chirumalla, Christer Osterman, Lina Stålberg; Integrating advanced digital technologies in existing lean-based production systems:

analysis of paradoxes, imbalances and management strategies. *International Journal of Operations & Production Management* 28 May 2024; 44 (6): 1158-1191. <https://doi.org/10.1108/IJOPM-05-2023-0434>

Prashar, A. (2018). Toward cycle time reduction in manufacturing SMEs: Proposal and evaluation. *Quality Engineering*, 30(3), 469-484.

Rane, A. B., Sudhakar, D. S. S., & Rane, S. (2015, January). Improving the performance of assembly line: Review with case study. In *2015 International Conference on Nascent Technologies in the Engineering Field (ICNTE)* (pp. 1-14). IEEE.

References

Sahadevan, S. K., & Muralikrishnan, A. V. (2024). Integrating Industry 4.0: Enhancing Operational Efficiency Through Data Digitalization A Case Study on Hitachi Energy.

Sahu, A., Agrawal, S., & Kumar, G. (2023). Triple bottom line performance of manufacturing Industry: A value engineering approach. *Sustainable Energy Technologies and Assessments*, 56, 103029.

Saini, S., & Singh, D. (2022). Lean manufacturing practices for enhancing firm performance in medium enterprises: a case study from Indian context. *International Journal of Productivity and Quality Management*, 35(3), 352-382.

Saini, S., Singh, D., & Singh, I. (2022). Performance Enhancements Using Lean Manufacturing Practices in SMEs: A Case Study from Northern India. In *Sustainable Advanced Manufacturing and Materials Processing* (pp. 187-207). CRC Press.

Sangwa, N. R., & Sangwan, K. S. (2023). Leanness assessment of a complex assembly line using integrated value stream mapping: a case study. *The TQM Journal*, 35(4), 893-923.

Seth, D., Seth, N., & Dhariwal, P. (2017). Application of value stream mapping (VSM) for lean and cycle time reduction in complex production environments: a case study. *Production Planning & Control*, 28(5), 398-419.

Setianto, P., & Haddud, A. (2016). A maturity assessment of lean development practices in manufacturing industry. *International Journal of Advanced Operations Management*, 8(4), 294-322.

Setianto, P., & Haddud, A. (2016). A maturity assessment of lean development practices in manufacturing industry. *International Journal of Advanced Operations Management*, 8(4), 294-322.

Sharma, A., Bhanot, N., Gupta, A., & Trehan, R. (2022). Application of Lean Six Sigma framework for improving manufacturing efficiency: a case study in Indian context. *International Journal of Productivity and Performance Management*, 71(5), 1561-1589.

Sharma, R. K., Kumar, D., & Kumar, P. (2006). Manufacturing excellence through TPM implementation: a practical analysis. *Industrial Management & Data Systems*, 106(2), 256-280.

Sonego, D. M., & de Lima, E. P. (2025, June). Analysis of Operations Strategies in an Electricity Distribution Company. In *Intelligent Production and Industry 5.0 with Human Touch, Resilience, and Circular Economy: Transactions of the 12th International Conference on Production Research-ICPR Americas 2024* (p. 419). Springer Nature.

Sony, M. (2019). Lean Six Sigma in the power sector: frog into prince. *Benchmarking: An International Journal*, 26(2), 356-370.

Stockton, D. P., Bland, J. R., McClanahan, T., Wilson, J., Harris, D. L., & McShane, P. (2007, September). Natural ester transformer fluids: safety, reliability & environmental performance. In *2007 IEEE Petroleum and Chemical Industry Technical Conference* (pp. 1-7). IEEE.

Szpytko, J., & Salgado Duarte, Y. (2021). A digital twins concept model for integrated maintenance: a case study for crane operation. *Journal of Intelligent Manufacturing*, 32(7), 1863-1881.

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. *The International Journal of Advanced Manufacturing Technology*, 94(9), 3563-3576.

Tra, V., Duong, B. P., & Kim, J. M. (2019). Improving diagnostic performance of a power transformer using an adaptive oversampling method for imbalanced data. *IEEE Transactions on Dielectrics and Electrical Insulation*, 26(4), 1325-1333.

Trapfrey, A. J., Trapfrey, C. V., Ma, L., & Chang, J. C. (2015). Intelligent engineering asset management system for power transformer maintenance decision supports under various operating conditions. *Computers & Industrial Engineering*, 84, 3-11.

Trehan, R., Gupta, A., & Handa, M. (2019). Implementation of Lean Six Sigma framework in a large scale industry: a case study. *International Journal of Six Sigma and Competitive Advantage*, 11(1), 23-41.

Tripathi, V., Chattopadhyaya, S., Bhaduria, A., Sharma, S., Li, C., Pimenov, D. Y., ... & Gautam, G. D. (2021). An agile system to enhance productivity through a modified value stream mapping approach in industry 4.0: A novel approach. *Sustainability*, 13(21), 11997.

Tripathi, V., Chattopadhyaya, S., Mukhopadhyay, A. K., Sharma, S., Li, C., Singh, S., ... & Mohamed, A. (2022). A sustainable productive method for enhancing operational excellence in shop floor management for industry 4.0 using hybrid integration of lean and smart manufacturing: An ingenious case study. *Sustainability*, 14(12), 7452.

Tripathi, V., Chattopadhyaya, S., Mukhopadhyay, A. K., Sharma, S., Li, C., & Di Bona, G. (2022). A sustainable methodology using lean and smart manufacturing for the cleaner production of shop floor management in industry 4.0. *Mathematics*, 10(3), 347.

Tripathi, V., Chattopadhyaya, S., Mukhopadhyay, A. K., Sharma, S., Li, C., Singh, S., ... & Mohamed, A. (2022). Recent progression developments on process optimization approach for inherent issues in production shop floor management for industry 4.0. *Processes*, 10(8), 1587.

Vahedi, A., & Behjat, V. (2011). Online monitoring of power transformers for detection of internal winding short circuit faults using negative sequence analysis. *European Transactions on Electrical Power*, 21(1), 196-211.

Wang, C. N., Vo, T. T. B. C., Hsu, H. P., Chung, Y. C., Nguyen, N. T., & Nhieu, N. L. (2024). Improving processing efficiency through workflow process reengineering, simulation and value stream mapping: a case study of business process reengineering. *Business Process Management Journal*, 30(7), 2482-2515.

Worrell, E. (2008). Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers.

Xiang, Z. T., & Chin, J. F. (2021). Implementing total productive maintenance in a manufacturing small or medium-sized enterprise. *Journal of Industrial Engineering and Management (JIEM)*, 14(2), 152-175.

Yaghoobi, J., Abdullah, A., Kumar, D., Zare, F., & Soltani, H. (2019). Power quality issues of distorted and weak distribution networks in mining industry: A review. *IEEE Access*, 7, 162500-162518.

Yingjian, L., Abakr, Y. A., Qi, Q., Xinkui, Y., & Jiping, Z. (2016). Energy efficiency assessment of fixed asset investment projects-A case study of a Shenzhen combined-cycle power plant. *Renewable and Sustainable Energy Reviews*, 59, 1195-1208.

You, P., Guo, S., Zhao, H., & Zhao, H. (2017). Operation performance evaluation of power grid enterprise using a hybrid BWM-TOPSIS method. *Sustainability*, 9(12), 2329.

Zheng, G., & Brintrup, A. (2025). Enhancing supply chain visibility with generative AI: an exploratory case study on relationship prediction in knowledge graphs. *International Journal of Production Research*, 1-23.