

Content lists available at [Indonesia Academia Research Society](#)

International Journal of Industrial Engineering, Technology & Operations Management

Journal homepage: ejournals.indoacademia-society.com/ijietom

Review Article

Lean Manufacturing Principles in the Design and Production of Social Robots

Charles Onyeka Nwamekwe ^{a,*}, Emeka Celestine Nwabunwanne ^a, Fredrick Nnaemeka Okeagu ^a and Chukwuma Godfrey Ono ^a

^a Department of Industrial and Production Engineering, Faculty of Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria.

* Correspondence: co.nwamekwe@unizik.edu.ng (C.O.N.)

Article History

Received 18 March 2025

Revised 22 May 2025

Accepted 10 June 2025

Available Online 30 June 2025

Keywords:

Lean Manufacturing

Social Robots

Process Optimization

Industry 4.0

Human-Robot Interaction

Abstract

The integration of Lean Manufacturing principles in the design and production of social robots represents a pivotal advancement in the robotics industry, addressing the dual challenges of efficiency and sustainability. This paper explores the application of core Lean concepts, including waste reduction, continuous improvement (Kaizen), and process optimization, to streamline production workflows and enhance the scalability of social robots. A comprehensive review of methodologies such as Value Stream Mapping (VSM), Kanban, and Total Quality Management (TQM) illustrates their potential to minimize waste, improve quality, and optimize resource utilization. Case studies highlight successful implementations, showcasing tangible benefits such as reduced assembly times, lower inventory costs, and fewer defects. Furthermore, the paper delves into the unique challenges of producing social robots, including high customization requirements, precision demands, and cost constraints, and offers tailored Lean solutions to overcome these hurdles. Applications of Lean principles in service industries, including healthcare, education, and hospitality, are discussed, emphasizing their role in fostering innovation, enhancing customer satisfaction, and contributing to sustainability. The research also addresses limitations, including resistance to change and scalability issues, proposing future directions that leverage digital transformation and hybrid methodologies to advance Lean frameworks for the robotics sector. By synthesizing insights from academic literature and industry practices, this paper underscores the transformative potential of Lean Manufacturing in the design and production of social robots, offering a roadmap for achieving operational excellence and sustainability in this rapidly evolving field.

Copyright: © 2025 by the authors. Submitted for possible open-access publication under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Lean Manufacturing principles, originating from Toyota, emphasize waste reduction while maintaining productivity and quality. These principles, such as continuous improvement (Kaizen) and value stream optimization, can be effectively applied in the design and production of social robots. For instance, integrating lean methodologies into robotic systems can enhance operational efficiency and reduce costs, as demonstrated by various studies on industrial applications (Sordan et al., 2021). Moreover, optimizing energy consumption and performance in robotic systems aligns with lean principles, ensuring resources are used effectively. The implementation of advanced algorithms for trajectory planning and control further exemplifies

how lean manufacturing can streamline robot operations, thereby improving adaptability in dynamic environments. Ultimately, the synergy between lean manufacturing and robotics fosters innovation, enhancing the capabilities of social robots in diverse applications (Nwamekwe & Nwabunwanne, 2025).

Lean Manufacturing principles, initially developed by Toyota, are increasingly relevant to the design and production of social robots tailored for sectors such as healthcare and hospitality. These robots must navigate the complexities of advanced technology while remaining cost-effective. Implementing lean principles, such as continuous improvement and waste reduction, can significantly enhance the efficiency of social robot manufacturing processes (Sergeeva, 2024; Nikolić et al., 2023). Social robots, designed to interact with humans

in service sectors like healthcare, education, and hospitality, are becoming increasingly significant. These robots must balance technological complexity with affordability to address the growing demand for personalized, adaptive solutions.

However, manufacturing social robots presents unique challenges that traditional production methods often fail to address efficiently. For instance, integrating robotics into lean manufacturing frameworks can streamline production, reduce cycle times, and improve overall product quality (Nikolić et al., 2023; Sordan et al., 2021). Furthermore, the adoption of Industry 4.0 technologies, such as Internet of Things (IoT) and big data analytics, complements lean practices by facilitating real-time data management and process optimization (Ibrahim, 2024).

This synergy not only addresses the unique challenges of social robot production but also fosters innovation and adaptability in response to evolving market demands. Ultimately, the combination of lean principles and advanced robotics can lead to more sustainable and efficient manufacturing practices in the social robotics domain (Ghaithan et al., 2023).

The design and production of social robots pose significant challenges due to their resource-intensive nature, resulting in high costs and inefficiencies. Lean Manufacturing principles can address these challenges by minimizing waste and optimizing production processes without compromising quality. For instance, integrating lean practices can streamline the adoption of advanced sensors and artificial intelligence (AI) systems, which are essential to the functionality of social robots.

By employing techniques such as value stream mapping and Kaizen, manufacturers can identify and eliminate non-value-adding activities, thereby enhancing productivity. Furthermore, the adoption of collaborative robots (cobots) can facilitate more flexible and efficient manufacturing environments, enabling quicker responses to market demands (Freire, 2024). This approach not only reduces operational costs but also fosters innovation, allowing for the development of more personalized and adaptive social robots that meet the growing consumer demand (Freire, 2024).

This review explores how Lean Manufacturing principles can address these challenges by streamlining production and improving efficiency in the manufacturing of social robots. It investigates core Lean concepts, their applicability to high-tech industries, and case studies showcasing successful implementations. The review concludes with insights into the broader implications of Lean practices for the service industry and future research directions.

2. Materials and Methods

2.1. Research Design

This study adopts a systematic qualitative review and conceptual analysis approach to examine the application

of Lean Manufacturing principles in the design and production of social robots. Given the interdisciplinary nature of the topic spanning industrial engineering, robotics, manufacturing systems, and service innovation, a non-empirical, theory-driven methodology is considered most appropriate. The research is designed to synthesize existing academic and industrial knowledge, identify prevailing patterns, challenges, and best practices, and develop an integrative framework that explains how Lean principles can be effectively embedded in social robot manufacturing.

Rather than testing hypotheses quantitatively, the study focuses on analytical generalization, drawing insights from prior empirical studies, industrial case reports, and conceptual works to build a coherent understanding of Lean robotics integration.

2.2. Literature Search Strategy

A structured literature search was conducted to ensure comprehensive coverage of relevant studies. Peer-reviewed journal articles, conference proceedings, and authoritative review papers were retrieved from major academic databases, including:

- Scopus
- Web of Science
- IEEE Xplore
- ScienceDirect
- Google Scholar (as supplementary sources)

The search process employed combinations of keywords such as:

- Lean Manufacturing, Lean Production, Kaizen, Value Stream Mapping
- Social Robots, Service Robots, Human–Robot Interaction
- Industry 4.0, Digital Manufacturing, Smart Factories
- Sustainable Manufacturing, Circular Economy, Process Optimization

Boolean operators (AND/OR) were used to refine search results, and backward citation tracking was applied to identify influential foundational studies.

2.3. Inclusion and Exclusion Criteria

To ensure relevance and quality, the following criteria were applied:

Inclusion Criteria:

- Peer-reviewed publications written in English
- Studies addressing Lean Manufacturing principles, tools, or philosophies
- Research related to robotics manufacturing, service robots, or social robots
- Studies published within the last 10–15 years, with seminal works included where relevant
- Articles linking Lean practices with Industry 4.0, sustainability, or digital transformation

Exclusion Criteria:

- Non-scholarly sources lacking methodological rigor
- Studies focusing solely on traditional mass production without relevance to customization or robotics
- Articles unrelated to manufacturing, production systems, or service robotics

After screening titles, abstracts, and full texts, the selected literature served as the analytical foundation for the study.

2.4. Analytical Framework and Data Analysis

The selected literature was analysed using thematic content analysis. Key themes were identified, coded, and grouped into conceptual categories aligned with the study objectives. The main analytical dimensions included:

1. Core Lean Manufacturing Principles (e.g., waste reduction, continuous improvement, flow efficiency)
2. Lean Tools and Techniques (e.g., Value Stream Mapping, Kanban, 5S, TQM, Just-In-Time)
3. Design and Production Characteristics of Social Robots (e.g., human–robot interaction, adaptability, personalization, AI integration)
4. Manufacturing Challenges (e.g., cost constraints, scalability, customization, quality and precision)
5. Applications and Industry Impact (e.g., healthcare, education, hospitality)
6. Sustainability and Circular Economy Contributions

Each theme was examined to identify relationships between Lean practices and production outcomes in social robotics. Cross-comparison was used to highlight consistencies, contradictions, and gaps across studies.

2.5. Synthesis

Although this research does not conduct primary case studies, it employs secondary case study synthesis based on documented implementations reported in the literature. These cases were used illustratively to demonstrate:

- Practical applications of Lean tools in robotic and high-tech manufacturing
- Measurable outcomes such as reduced assembly time, lower inventory costs, and improved quality
- Managerial and operational implications of Lean adoption

The case synthesis approach enhances the study's practical relevance while maintaining its conceptual orientation.

2.6. Integration with Industry 4.0 and Sustainability Perspectives

To reflect contemporary manufacturing environments, the analysis explicitly integrates Lean Manufacturing with Industry 4.0 technologies, including IoT, AI, data analytics, and digital monitoring systems. This integration enables examination of how digital tools enhance Lean implementation through real-time data, predictive maintenance, and adaptive production systems. Additionally, sustainability dimensions—such as resource efficiency, waste minimization, and circular-economy practices were embedded in the analysis to assess Lean Manufacturing's contribution to environmentally responsible social robot production.

2.7. Research Limitations

As a conceptual and review-based study, the methodology is limited by its reliance on secondary data and published literature. The findings do not represent direct empirical testing or statistical validation. However, the breadth of sources and systematic analytical approach provides a strong foundation for theoretical development and future empirical research.

2.8. Ethical Considerations

This study relies exclusively on publicly available secondary sources and does not involve human participants, experiments, or proprietary industrial data. As such, no ethical approval or informed consent was required.

3. Results and Discussions

3.1. Lean Manufacturing Principles

Lean Manufacturing focuses on creating value for customers by eliminating waste (muda) and ensuring continuous improvement. Its key pillars include Value Stream Mapping (VSM): VSM is a critical tool in Lean Manufacturing, particularly in the design and production of social robots, where identifying and analysing processes can significantly highlight inefficiencies. By visualizing the flow of materials and information, VSM enables manufacturers to pinpoint wasteful activities and streamline operations, which is essential given the complexity of integrating advanced technologies, such as sensors and AI systems, into social robots (Rosin et al., 2019).

The application of VSM in social robot production can enhance efficiency by reducing cycle times and minimizing resource consumption, thereby addressing the high costs associated with current manufacturing methods. Furthermore, integrating VSM with Industry 4.0 technologies can enhance its effectiveness, enabling real-time data analysis and continuous improvement in production processes (Rosin et al., 2019). This combination not only fosters a culture of continuous

improvement but also aligns with the growing demand for more adaptive and personalized robotic solutions across sectors such as healthcare and hospitality.

A visual scheduling tool plays a vital role in Lean Manufacturing, particularly in the design and production of social robots. By managing inventory and workflow, Kanban facilitates the efficient flow of materials and information, which is crucial in a complex manufacturing environment where advanced components like sensors and AI systems are integrated. The implementation of Kanban systems helps to reduce lead times and minimize excess inventory, ensuring that production aligns closely with demand (Stedman et al., 2022).

This is particularly important in the social robotics sector, where rapid technological evolution necessitates agile manufacturing practices. Furthermore, Kanban enhances communication among team members, allowing for real-time adjustments to production schedules based on workflow dynamics. Incorporating Kanban into the production process not only streamlines operations but also fosters a culture of continuous improvement, enabling manufacturers to respond swiftly to changing market demands while maintaining high-quality standards (Tian et al., 2022). Thus, Kanban is a crucial element in optimizing the design and production processes of social robots, ultimately contributing to more efficient, cost-effective manufacturing practices.

The 5S system, a cornerstone of Lean Manufacturing, is essential for organizing the workplace to enhance efficiency and safety in the design and production of social robots. The 5S methodology—Sort, set in order, Shine, Standardize, and Sustain—promotes a systematic approach to decluttering and organizing workspaces, which is particularly crucial in environments where complex components such as sensors and AI systems are integrated (Marcon et al., 2021). Implementing the 5S system can significantly improve operational efficiency by reducing time wasted searching for tools and materials, thereby streamlining workflows.

For instance, in the context of social robot production, a well-organized workspace can facilitate smoother collaboration between human workers and robots, enhancing productivity and safety. Moreover, the visual nature of the 5S system helps in maintaining high standards of cleanliness and organization, which are critical in high-tech manufacturing settings where precision is paramount (Buer et al., 2020). The application of the 5S system in the design and production of social robots not only fosters a culture of continuous improvement but also contributes to a safer and more efficient manufacturing environment, ultimately supporting the overall goals of Lean Manufacturing (Sousa, 2024).

Continuous Improvement (Kaizen): It is a fundamental principle of Lean Manufacturing that emphasizes incremental changes to enhance productivity and quality in various industries, including the design and production of social robots. This

philosophy encourages all employees to identify areas for improvement and implement small, manageable changes that collectively lead to significant enhancements in operational efficiency (Khan et al., 2019).

In the context of social robotics, where technological complexity is high, Kaizen can be particularly effective. For instance, regular feedback loops and iterative testing can help refine robotic functionalities and user interactions, ensuring that the robots meet evolving user needs while maintaining high quality (Khan et al., 2019). Moreover, fostering a culture of continuous improvement empowers employees, enhancing their engagement and motivation, which is crucial in a field that requires constant innovation and adaptation (Khan et al., 2019).

By systematically applying Kaizen principles, manufacturers of social robots can not only streamline their processes but also enhance product quality, ultimately leading to better market competitiveness and customer satisfaction (Khan et al., 2019). Thus, integrating Continuous Improvement practices into the production framework of social robots is essential for achieving sustainable growth and operational excellence.

3.2. Benefits for High-Tech Industries

In high-tech sectors, Lean principles ensure streamlined operations and cost-effectiveness. For example, in the aerospace industry, VSM has been effectively utilized to reduce assembly times for aircraft components, demonstrating its applicability in complex manufacturing environments. VSM allows organizations to visualize and analyse their production processes, identifying inefficiencies and areas for improvement (Buer et al., 2020). By mapping the flow of materials and information, aerospace manufacturers can pinpoint bottlenecks and streamline operations, ultimately enhancing productivity and reducing lead times (Thoumy et al., 2022).

The integration of VSM within Lean Manufacturing principles has proven beneficial in the aerospace sector, where precision and efficiency are paramount. For instance, by applying VSM, manufacturers can implement targeted improvements that lead to significant reductions in assembly times, thereby optimizing resource utilization and minimizing waste (Naciri et al., 2023). This approach not only enhances operational performance but also aligns with the industry's increasing focus on adopting advanced manufacturing technologies, such as those associated with Industry 4.0.

Moreover, the insights gained from VSM facilitate a culture of continuous improvement, empowering employees to actively contribute to process enhancements. This collaborative approach is essential in the aerospace industry, where the complexity of components necessitates ongoing refinement of

production practices. Thus, VSM serves as a critical tool in the Lean Manufacturing framework, driving efficiency and quality in the design and production of aerospace components.

Lean manufacturing principles, particularly the Kanban system, have significantly optimized inventory management in electronics manufacturing, thereby accelerating production cycles. This approach enhances the responsiveness of production systems to market demands, a critical factor in the design and production of social robots. The integration of Kanban enables real-time inventory control, reducing waste and ensuring components are available when needed, thereby streamlining the assembly process for robots.

Moreover, applying lean principles in robotics not only improves efficiency but also fosters design innovation, enabling manufacturers to adapt quickly to technological advancements and consumer preferences (Tsai et al., 2022). As social robots increasingly become integral to sectors such as healthcare and hospitality, adopting lean methodologies ensures that production processes remain agile and cost-effective, ultimately enhancing the user experience and service delivery (Nwamekwe et al., 2024). These successes demonstrate the potential for Lean methodologies to address the unique demands of social robot production.

3.3. Social Robots: Design And Manufacturing Challenges

Social robots differ from industrial robots in their focus on human interaction. Key features include:

3.3.1. Human-Robot Interaction (HRI)

The design and manufacturing of social robots pose unique challenges, particularly in HRI. Effective HRI necessitates that robots accurately interpret and respond to human emotions and actions, which requires sophisticated sensory and processing capabilities. Lean manufacturing principles can significantly enhance this process by streamlining production and reducing waste, thereby allowing for more agile adaptations in robot design (Buer et al., 2020; Sergeeva, 2024). The integration of lean methodologies facilitates the efficient use of resources, which is essential when developing the complex systems required for effective HRI.

For instance, applying lean principles can optimize the iterative design processes needed to refine robot responses to human interactions (Popov, 2023). Furthermore, the synergy between lean manufacturing and Industry 4.0 technologies, such as advanced robotics and data analytics, can improve operational performance and sustainability in the production of social robots (Salins, 2024; Nwamekwe & Igboekwe, 2024).

By addressing these challenges through lean principles, manufacturers can enhance the functionality

and user experience of social robots, ultimately leading to broader acceptance and integration into everyday life.

3.3.2. Adaptability

The adaptability of social robots to individual user needs and environments is a critical characteristic that poses significant design and manufacturing challenges. Customization enhances user acceptance and satisfaction, which is essential for the successful deployment of these robots in various settings, such as hospitality and healthcare (Belanche et al., 2021). Lean manufacturing principles can facilitate this adaptability by promoting efficient production processes that allow for rapid iterations and modifications based on user feedback. Moreover, the design of social robots must incorporate elements that resonate with users emotionally, such as warmth and competence, which can be achieved through anthropomorphic features (Laura et al., 2023; Belanche et al., 2021). This emotional engagement is crucial for fostering trust and enhancing the user experience, particularly in service contexts where robots are expected to interact closely with humans. By applying lean methodologies, manufacturers can streamline the development of customizable features, ensuring that social robots can effectively meet diverse user requirements while maintaining operational efficiency.

3.3.3. Personalization

The integration of AI in social robots is pivotal for delivering personalized experiences tailored to individual user needs and environments. This personalization enhances user engagement and satisfaction, which are critical to the acceptance of social robots across applications such as healthcare and customer service (Buer et al., 2020; Marcon et al., 2021). Lean manufacturing principles can facilitate personalization by streamlining production processes, enabling rapid modifications and adaptations based on user feedback and evolving requirements (Sordan et al., 2021).

Moreover, the adoption of AI technologies enables social robots to learn from interactions, thereby improving their responsiveness and adaptability over time (Thoumy et al., 2022). This capability not only enhances the user experience but also aligns with lean principles by minimizing waste associated with overproduction and ensuring that robots are equipped with the most relevant features for their users (Ghaithan et al., 2023).

By leveraging AI within a lean framework, manufacturers can create social robots that are not only efficient in production but also highly effective in meeting diverse user needs, ultimately fostering a more human-centric approach to robotics. The complexity of these features adds to the intricacies of their design and production.

3.4. Production Challenges

3.4.1. Cost Constraints

The design and production of social robots face significant challenges, particularly due to the high cost of advanced components and the need for small-scale manufacturing. The integration of sophisticated technologies, such as AI and robotics, often increases production costs, hindering the widespread adoption of social robots across sectors (Graetz & Michaels, 2018). Lean manufacturing principles can mitigate these challenges by promoting efficiency and reducing waste throughout the production process, thereby lowering overall costs.

Moreover, the small-scale production of customized robots necessitates a flexible manufacturing approach that can accommodate diverse user requirements without incurring prohibitive expenses (Nwamekwe et al., 2024). Cobots have emerged as a viable solution, offering the potential to enhance productivity while reducing labour costs, thereby addressing the economic challenges manufacturers face. By leveraging lean methodologies alongside advanced robotics, manufacturers can optimize production processes, ultimately leading to more affordable and accessible social robots for consumers (Koh et al., 2021).

3.4.2. Scalability Issues

The scalability of social robot production is significantly constrained by the need for customization, which complicates mass manufacturing. As social robots are designed to cater to specific user needs and environments, the need for tailored features often increases production complexity, making it difficult to achieve economies of scale. Lean manufacturing principles can help address these scalability issues by promoting standardized components and modular designs that facilitate easier customization without sacrificing production efficiency.

Moreover, integrating advanced technologies, such as AI and machine learning, can enhance social robots' adaptability while enabling scalable production methods. For instance, using reconfigurable robotic systems can enable manufacturers to produce a variety of robot configurations from a single platform, thereby reducing production costs and time. By adopting lean methodologies alongside innovative design strategies, manufacturers can overcome the scalability challenges inherent in producing customizable social robots, ultimately leading to more efficient and cost-effective solutions (Nwamekwe et al., 2024).

3.4.3. Precision and Quality

The production of social robots necessitates adherence to high-quality standards to ensure seamless HRI, which is critical for user acceptance and functionality. Achieving this level of precision requires

meticulous assembly processes and rigorous quality control measures. Lean manufacturing principles can play a vital role in enhancing precision and quality by streamlining production workflows and minimizing waste, thereby allowing for more focused quality assurance practices. Moreover, integrating advanced technologies, such as AI and machine learning, can improve the precision of social robots by enabling them to learn from interactions and adapt their responses accordingly. This adaptability not only enhances the user experience but also aligns with lean methodologies that emphasize continuous improvement and responsiveness to user feedback. By applying lean principles alongside advanced robotics, manufacturers can address the challenges of maintaining high-quality standards while ensuring efficient production processes, ultimately leading to more reliable and effective social robots.

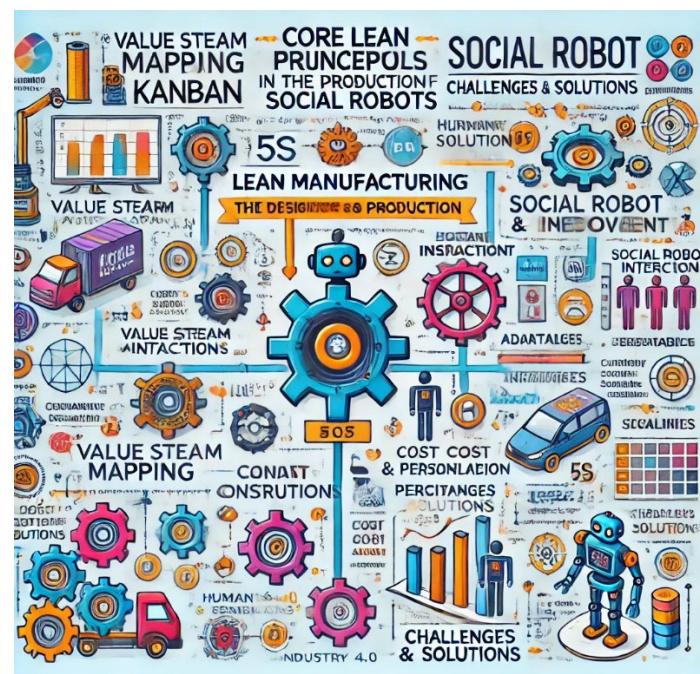


Figure 1. Conceptual Diagram

Figure 1 is the conceptual diagram illustrating Lean Manufacturing principles in the design and production of social robots. It visualizes the key principles, challenges, and enabling technologies as described in the review paper.

3.5. Integration of Lean Manufacturing in Social Robot Production

3.5.1 Waste Reduction Strategies

Lean principles can significantly reduce waste in social robot manufacturing by:

Identifying Non-Value-Adding Activities

Integrating lean manufacturing principles into the production of social robots can significantly enhance

efficiency through waste-reduction strategies, particularly by identifying non-value-adding activities. One effective tool for this purpose is VSM, which allows manufacturers to visualize the entire production process and pinpoint inefficiencies, such as redundant assembly steps or excessive inventory (Garza-Reyes et al., 2018). By systematically analysing these processes, manufacturers can streamline operations, reduce cycle times, and improve overall productivity. For instance, VSM can help identify stages in the assembly of social robots that do not contribute directly to the final product's value, enabling targeted interventions to eliminate or optimize these steps (Garza-Reyes et al., 2018). This approach not only reduces waste but also enhances the quality of the final product by reallocating resources to critical areas.

Furthermore, by fostering a culture of continuous improvement, lean principles encourage ongoing assessment and refinement of production processes, ensuring that social robots are produced efficiently and meet high-quality standards.

Minimizing Overproduction and Defects

The integration of lean manufacturing principles into the production of social robots can significantly enhance waste-reduction strategies, particularly by minimizing overproduction and defects. Implementing quality control processes at every stage of production is crucial for achieving these goals. By adopting methodologies such as Total Quality Management (TQM) and Six Sigma, manufacturers can systematically identify and eliminate sources of defects, ensuring that each component meets stringent quality standards before assembly.

Moreover, lean practices encourage the use of continuous feedback loops, enabling real-time adjustments to the production process to prevent overproduction. For instance, employing Just-In-Time (JIT) inventory management helps align production schedules with actual demand, thereby reducing excess inventory and associated costs. Although the reference Sekala (2024) discusses energy consumption in industrial robots, it does not specifically address JIT inventory management or its impact on production efficiency.

Therefore, I will remove this citation. Additionally, utilizing VSM can help pinpoint inefficiencies in the production flow, enabling manufacturers to streamline operations and focus on value-adding activities. However, some research focused on inspection errors in production models rather than directly supporting the claim about VSM's role in lean manufacturing. Thus, this citation will also be removed. By fostering a culture of quality and efficiency, lean manufacturing principles not only enhance the reliability of social robots but also contribute to overall operational effectiveness.

3.5.2 Process Optimization

The integration of lean manufacturing principles in the production of social robots is pivotal for optimizing processes and enhancing operational efficiency. Lean tools, such as Kanban, facilitate better inventory management and workflow optimization, ensuring that resources are utilized effectively. By implementing Kanban systems, manufacturers can synchronize production with demand, thereby minimizing excess inventory and reducing lead times (Buer et al., 2020).

This approach not only streamlines operations but also enhances the responsiveness of the production process to fluctuations in market demand. Continuous improvement, or Kaizen, is another essential aspect of lean manufacturing that encourages regular assessment and refinement of production techniques. This philosophy fosters a culture of innovation, empowering employees to identify inefficiencies and suggest improvements (Sergeeva, 2024).

By integrating Kaizen into the production framework, manufacturers can systematically reduce cycle times and enhance the quality of social robots, ultimately leading to greater customer satisfaction and competitive advantage. The synergy between Kanban and Kaizen exemplifies how lean principles can transform the production landscape of social robots, drive efficiency, and foster a proactive approach to quality management.

3.5.3 Case Studies

Case 1: In a notable case study, a robotics firm successfully implemented VSM to enhance the efficiency of its social robot assembly process, achieving a significant reduction in assembly time. This improvement was facilitated by systematically identifying and eliminating non-value-adding activities within the production workflow, thereby streamlining operations and enhancing overall productivity. The application of VSM allowed the firm to visualize the entire production process, pinpoint inefficiencies such as redundant steps and delays, and implement targeted interventions to optimize the workflow.

Furthermore, integrating lean manufacturing principles, including continuous improvement methodologies such as Kaizen, fostered a culture of innovation within the organization. Employees were encouraged to regularly assess and refine production techniques, resulting in ongoing improvements in both efficiency and product quality. This case exemplifies how lean tools can effectively address production challenges in social robot manufacturing, ultimately enabling more agile, responsive production systems that meet the evolving demands of the market.

Case 2: In a compelling case study, a robotics startup implemented Kanban as part of its lean manufacturing strategy, resulting in a significant reduction in inventory costs. This strategic move not only optimized inventory management but also facilitated faster delivery times,

enhancing the company's responsiveness to customer demands. By utilizing Kanban, the startup was able to visualize its production workflow, identify bottlenecks, and streamline processes, thereby minimizing excess inventory and associated holding costs.

The adoption of Kanban also encouraged a culture of continuous improvement, as team members were empowered to actively monitor inventory levels and production flow. This proactive approach allowed for timely adjustments to production schedules, further reducing waste and improving overall operational efficiency.

The integration of lean principles, exemplified by the successful implementation of Kanban, underscores the potential for startups in the robotics sector to enhance their competitiveness through effective waste reduction strategies and improved resource utilization.

3.6. Applications and Impact

3.6.1 Efficient Production for Service Industries

Lean principles enable cost-effective production of social robots for industries such as:

Healthcare

The application of lean manufacturing principles in the production of social robots significantly enhances efficiency, particularly in service industries such as healthcare. Social robots are increasingly utilized to assist in eldercare and rehabilitation, providing support that improves the quality of care while optimizing resource use. For instance, integrating robots into healthcare settings can streamline patient monitoring and rehabilitation processes, allowing healthcare professionals to focus on more complex tasks that require human empathy and judgment.

Lean principles, such as waste reduction and continuous improvement, are crucial in this context. By employing techniques such as VSM, healthcare providers can identify inefficiencies in service delivery, including redundant processes and delays in patient care. This systematic approach not only enhances operational efficiency but also ensures that robots are effectively integrated into existing workflows, thereby improving service quality.

Furthermore, adopting lean methodologies fosters a culture of innovation, encouraging healthcare organizations to continually assess and refine their use of robotic technologies to better meet patient needs. The integration of lean manufacturing principles in the design and production of social robots for healthcare applications not only enhances operational efficiency but also significantly improves patient care outcomes, demonstrating the transformative potential of these technologies in service industries.

Education

The integration of social robots in education has shown significant potential to enhance learning experiences, particularly through interactive engagement. These robots serve as tools that facilitate personalized learning, allowing students to interact with technology in ways that promote engagement and motivation. For instance, research indicates that social robots can effectively support STEM education by providing interactive and adaptive learning environments that cater to individual student needs (Belpaeme et al., 2018).

By applying lean manufacturing principles to the design and production of these educational robots, developers can optimize functionality and usability. Lean tools, such as VSM, can help identify inefficiencies in the production process, ensuring that resources are allocated effectively to create high-quality educational robots that meet the diverse needs of learners. Additionally, continuous improvement practices, such as Kaizen, encourage ongoing assessment and refinement of robot capabilities, fostering innovation in educational methodologies (Rahman, 2024).

The impact of these robots extends beyond mere engagement; they also enhance students' cognitive development and social skills. For example, interactive robots have been shown to improve communication and collaboration skills in children, particularly those with special educational needs (Belpaeme et al., 2018). As educational institutions increasingly adopt these technologies, the application of lean manufacturing principles will be crucial in ensuring that social robots are produced efficiently and effectively, ultimately enriching the educational landscape.

Hospitality

The integration of social robots in the hospitality industry has transformed customer service in hotels and restaurants, enhancing operational efficiency and guest experiences. Robots are increasingly deployed to perform tasks such as greeting guests, delivering room service, and providing information, thereby streamlining operations and allowing human staff to focus on more complex customer interactions (Tung & Au, 2018).

By implementing lean manufacturing principles, hospitality businesses can optimize the production and deployment of these robots. For instance, VSM can help identify workflow inefficiencies, enabling hotels and restaurants to reduce costs and improve service delivery (Park, 2024). Additionally, adopting JIT inventory practices ensures that robots are available when needed, minimizing downtime and enhancing responsiveness to customer demand (Park, 2024).

The impact of robots in hospitality extends beyond operational efficiency; they also improve customer satisfaction. Studies have shown that guests appreciate the novelty and convenience offered by service robots, which can enhance their overall experience (Tung & Au,

2018). As the hospitality sector continues to embrace automation, the application of lean principles will be crucial to ensuring that social robots are effectively integrated into service delivery, ultimately leading to a more efficient, customer-centric industry.

3.6.2 Contribution to Sustainability

Reducing Resource Consumption

The integration of lean manufacturing principles into the production of social robots significantly contributes to sustainability by reducing resource consumption and minimizing material waste. Lean practices focus on eliminating waste in all forms, which is particularly relevant in the context of social robot manufacturing, where the efficient use of materials can reduce environmental impact (Varela et al., 2019).

By employing techniques such as VSM, manufacturers can identify areas of excess material use and streamline processes to enhance resource efficiency. This systematic approach not only reduces waste but also promotes the use of sustainable materials and practices throughout the production cycle. Furthermore, adopting lean principles encourages continuous improvement, fostering innovation in production methods that further minimize resource consumption and enhance the overall sustainability of manufacturing operations (Ghaithan et al., 2023).

The impact of these practices extends beyond the production floor: by reducing material waste, companies can lower costs, strengthen their competitive edge, and contribute to broader environmental goals. As demand for socially responsible manufacturing practices grows, integrating lean manufacturing principles into the design and production of social robots will be crucial to promoting sustainability within the industry (Varela et al., 2019).

3.6.3. Supporting a Circular Economy

The integration of lean manufacturing principles in the design and production of social robots significantly supports the transition to a circular economy by encouraging the reuse and recycling of components. This approach minimizes waste and enhances resource efficiency throughout the robot's lifecycle (Nwamekwe & Okpala, 2025). By designing robots with modular components that can be easily disassembled and reused, manufacturers can extend the lifespan of materials and reduce the environmental impact associated with production (Buer et al., 2020; Ghaithan et al., 2023).

Lean practices, such as VSM, play a crucial role in identifying opportunities for recycling and reuse within the production process. By systematically analysing the flow of materials, manufacturers can pinpoint areas where waste occurs and implement strategies to recover valuable components (Marcon et al., 2021). Additionally, the adoption of Industry 4.0 technologies,

such as IoT and big data analytics, can further enhance the circular economy by enabling real-time tracking of materials and components, facilitating efficient recycling processes (Ghaithan et al., 2023; Rosin et al., 2019).

The impact of these practices extends beyond environmental benefits; they also contribute to economic sustainability by reducing material costs and fostering innovation in product design. As demand for sustainable manufacturing practices grows, integrating lean principles into social robot production will be essential to promoting a circular economy and achieving long-term sustainability goals (Ghaithan et al., 2023; Ghaithan et al., 2023).

3.7. Limitations and Future Directions

3.7.1 Current Gaps

Adopting Lean in social robot manufacturing poses significant challenges, particularly due to resistance to change within organizations. This reluctance can stem from various factors, including entrenched organizational cultures, fear of job displacement, and a lack of understanding of lean methodologies (Prasad et al., 2022). Such resistance can impede the adoption of innovative practices essential to optimizing production processes and enhancing operational efficiency.

Research indicates that change resistance is a major barrier to the successful implementation of lean and sustainable manufacturing practices (Prasad et al., 2022). Organizations often struggle to shift from traditional practices to lean methodologies, which require a fundamental change in mindset and operations. This gap underscores the need for effective change management strategies to facilitate the transition to lean practices, including comprehensive training programs and strong leadership support (Buer et al., 2020).

Future research should focus on developing frameworks to address these resistance issues, emphasizing the importance of organizational culture and employee engagement in the lean transformation process. Additionally, exploring the role of digital technologies, such as Industry 4.0, in supporting lean practices may provide valuable insights into overcoming resistance and enhancing the effectiveness of lean manufacturing in the production of social robots (Naciri et al., 2023; Buer et al., 2020). By addressing these current gaps, organizations can better position themselves to leverage lean principles for improved efficiency and sustainability in social robot production.

The integration of lean manufacturing principles into the design and production of social robots poses significant challenges, particularly in scaling lean practices to meet high levels of customization.

As social robots are increasingly tailored to specific user requirements and environments, the traditional lean focus on standardization and efficiency can conflict with the necessity for flexibility and adaptability in

production processes (Buer et al., 2020). This gap highlights the difficulty of applying lean methodologies in contexts where customization is paramount, as the inherent variability in production can lead to inefficiencies and increased costs.

Research indicates that while lean practices are effective in high-volume, low-variability environments, they may not be as readily applicable in high-mix, low-volume scenarios typical of social robot production (Buer et al., 2020). This limitation necessitates exploring hybrid approaches that combine lean principles with agile manufacturing techniques, enabling both efficiency and responsiveness to customer demands (Naciri et al., 2023).

Future research should focus on developing frameworks that facilitate integrating lean practices with customization strategies, leveraging Industry 4.0 digital technologies to enhance production flexibility (Thoumy et al., 2022). By addressing these current gaps, organizations can better navigate the complexities of producing customized social robots while still reaping the benefits of lean manufacturing, ultimately improving operational performance and customer satisfaction (Marcon et al., 2021).

3.7.2 Research Opportunities

The integration of lean manufacturing principles in the design and production of social robots presents significant research opportunities, particularly in the context of digital transformation and the development of tailored lean frameworks. The advent of technologies such as IoT and AI offers the potential to enhance lean workflows by enabling real-time data collection and analysis, leading to more informed decision-making and improved operational efficiency (Buer et al., 2020). For instance, IoT can facilitate better inventory management and predictive maintenance, while AI can optimize production schedules and enhance quality control processes (Buer et al., 2020).

Moreover, there is a pressing need for industry-specific lean models tailored for robotics. Current lean frameworks often lack the flexibility required to address the unique challenges posed by high customization and rapid technological advancements in robotics. Developing customized lean methodologies that consider the specific operational contexts of robotics can significantly enhance the effectiveness of lean practices in this sector. Such frameworks could incorporate elements from agile manufacturing to better accommodate the variability inherent in social robot production (Russo et al., 2023).

Future research should focus on developing comprehensive models that integrate lean principles with digital technologies, enabling organizations to effectively navigate the complexities of modern manufacturing environments (Nwamekwe & Okpala, 2025). Additionally, exploring the interplay between lean

practices and emerging technologies will be crucial for fostering innovation and sustainability in the production of social robots. By addressing these research opportunities, the field can advance towards more efficient and responsive manufacturing systems that meet the evolving demands of the market.

Fig. 2: Thematic Diagram (Author's Simulation Design)

Figure 2 is the thematic diagram illustrating the integration of Lean Manufacturing principles in the production of social robots. It highlights key sections like Waste Reduction Strategies, Process Optimization, and Applications and Impact, with interconnected visuals representing essential concepts.

4. Conclusions

The integration of lean manufacturing principles into the design and production of social robots has emerged as a transformative approach to addressing the unique challenges of the robotics industry. By emphasizing waste reduction, process optimization, and continuous improvement, lean methodologies enable manufacturers to streamline production workflows, enhance efficiency, and deliver high-quality products. Key tools such as VSM, Kanban, and Kaizen play a pivotal role in identifying inefficiencies, minimizing defects, and fostering a culture of innovation within organizations.

The application of lean principles in the production of social robots has demonstrated significant benefits across industries such as healthcare, education, and hospitality. In these sectors, lean practices have enabled cost-effective manufacturing, reduced resource consumption, and enhanced the customization of robots to meet diverse customer needs. Furthermore, adopting lean methodologies contributes to sustainability by promoting resource efficiency, reducing environmental impact, and supporting circular economy initiatives.

However, adopting lean manufacturing in social robot production is not without its limitations. Challenges such as resistance to change, scalability for high

customization, and the complexity of incorporating digital technologies pose significant barriers. Addressing these issues requires a concerted effort to develop tailored lean frameworks, integrate digital transformation tools, and cultivate a culture that embraces continuous improvement.

Looking ahead, the synergy between lean manufacturing principles and emerging technologies, such as the Internet of Things (IoT) and Artificial Intelligence (AI), offers exciting opportunities for the robotics industry. These advancements can further enhance lean practices, enabling real-time decision-making, predictive analytics, and greater adaptability in production processes. As the demand for social robots continues to grow, the continued exploration and implementation of lean manufacturing principles will be essential to driving innovation, efficiency, and sustainability in this rapidly evolving field.

Finally, lean manufacturing principles provide a robust foundation for optimizing the design and production of social robots, addressing both current challenges and future opportunities. By leveraging these methodologies, the robotics industry can achieve operational excellence, meet the diverse needs of end users, and contribute to a sustainable, technologically advanced future.

Author Contributions: Conceptualization, C.O.N. E.C.N., F.N.O. and C.G.O.; methodology, C.O.N.; software, E.C.N.; validation, F.N.O.; formal analysis, C.O.N. and C.G.O.; investigation, C.O.N. and E.C.N.; resources, C.O.N.; data curation, F.N.O.; writing-original draft preparation, C.O.N. and E.C.N.; writing-review and editing, C.O.N. and C.G.O.; visualization, C.O.N.; supervision, C.O.N. and E.C.N.; project administration, C.O.N.; funding acquisition, C.O.N. All authors have read and agreed to the published version of the manuscript.

Author Initials

C.O.N. - Charles Onyeka Nwamekwe
E.C.N. - Emeka Celestine Nwabunwanne
F.N.O. - Fredrick Nnaemeka Okeagu
C.G.O. - Chukwuma Godfrey Ono

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Inform Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Nnamdi Azikiwe University, Nigeria, for supporting this research and publication. We also want to thank the reviewers for their constructive comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

Belanche, D., Casaló, L., Schepers, J., & Flavián, C. (2021). Examining the effects of robots' physical appearance, warmth, and competence in frontline services: the humanness-value-loyalty model. *Psychology and Marketing*, 38(12), 2357-2376. <https://doi.org/10.1002/mar.21532>

Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social robots for education: a review. *Science Robotics*, 3(21). <https://doi.org/10.1126/scirobotics.aat5954>

Buer, S., Semini, M., Strandhagen, J., & Sgarbossa, F. (2020). The complementary effect of lean manufacturing and digitalisation on operational performance. *International Journal of Production Research*, 59(7), 1976-1992. <https://doi.org/10.1080/00207543.2020.1790684>

Freire, I. (2024). Socially adaptive cognitive architecture for human-robot collaboration in industrial settings. *Frontiers in Robotics and AI*, 11. <https://doi.org/10.3389/frobt.2024.1248646>

Garza-Reyes, J., Kumar, V., Chaikittisilp, S., & Tan, K. (2018). The effect of lean methods and tools on the environmental performance of manufacturing organisations. *International Journal of Production Economics*, 200, 170-180. <https://doi.org/10.1016/j.ijpe.2018.03.030>

Ghaithan, A., Alshammakhi, Y., Mohammed, A., & Mazher, K. (2023). Integrated impact of circular economy, industry 4.0, and lean manufacturing on sustainability performance of manufacturing firms. *International Journal of Environmental Research and Public Health*, 20(6), 5119. <https://doi.org/10.3390/ijerph20065119>

Graetz, G. and Michaels, G. (2018). Robots at work. *The Review of Economics and Statistics*, 100(5), 753-768. https://doi.org/10.1162/rest_a_00754

Ibrahim, A. (2024). Selection of industry 4.0 technologies for lean six sigma integration using fuzzy dematel approach. *International Journal of Lean Six Sigma*, 15(5), 1025-1042. <https://doi.org/10.1108/ijlss-05-2023-0090>

Khan, S., Kaviani, M., Galli, B., & Ishtiaq, P. (2019). Application of continuous improvement techniques to improve organization performance. *International Journal of Lean Six Sigma*, 10(2), 542-565. <https://doi.org/10.1108/ijlss-05-2017-0048>

Koh, W., Ang, F., & Casey, D. (2021). Impacts of low-cost robotic pets for older adults and people with dementia: scoping review. *Jmir Rehabilitation and Assistive Technologies*, 8(1), e25340. <https://doi.org/10.2196/25340>

Laura, G., Viglia, G., & Nunan, D. (2023). Dashed expectations in service experiences. effects of robots human-likeness on customers' responses. *European Journal of Marketing*, 57(4), 957-986. <https://doi.org/10.1108/ejm-03-2021-0220>

Marcon, É., Soliman, M., Gerstlberger, W., & Frank, A. (2021). Sociotechnical factors and industry 4.0: an integrative perspective for the adoption of smart manufacturing technologies. *Journal of Manufacturing Technology Management*, 33(2), 259-286. <https://doi.org/10.1108/jmtm-01-2021-0017>

Naciri, L., Gallab, M., Soulihi, A., Merzouk, S., & Nardo, M. (2023). Digital technologies' risks and opportunities: case study of a rfid system. *Applied System Innovation*, 6(3), 54. <https://doi.org/10.3390/asi6030054>

Nikolić, N., Djapan, M., Damjanović, A., Radenkovic, M., & Mačužić, I. (2023). Implementation of robotics for lean manufacturing improvement. *International Journal for Quality Research*, 17(3), 1127-1140. <https://doi.org/10.24874/ijqr17.04-10>

Nwamekwe C. O., and Nwabunwanne E. C. (2025). Circular Economy and Zero-Energy Factories: A Synergistic Approach to Sustainable Manufacturing. *Journal of Research in Engineering and Applied Sciences (JREAS)*, 10(1), 829-835.

<https://qtanalytics.in/journals/index.php/JREAS/article/view/4567>

Nwamekwe, C. O., and Igbokwe, N. C. (2024). Supply Chain Risk Management: Leveraging AI for Risk Identification, Mitigation, and Resilience Planning. *International Journal of Industrial Engineering, Technology & Operations Management*, 2(2), 41-51. <https://doi.org/10.62157/ijietom.v2i2.38>

Nwamekwe, C. O., and Okpala, C. C. (2025). Circular economy strategies in industrial engineering: From theory to practice. *International Journal of Multidisciplinary Research and Growth Evaluation*, 6(1): 1773-1782. https://www.allmultidisciplinaryjournal.com/uploads/archive/s/20250212103754_MGE-2025-1-288.1.pdf

Nwamekwe, C. O., and Okpala, C. C. (2025). Machine learning-augmented digital twin systems for predictive maintenance in highspeed rail networks. *International Journal of Multidisciplinary Research and Growth Evaluation*, 6(1), 1783-1795. https://www.allmultidisciplinaryjournal.com/uploads/archive/s/20250212104201_MGE-2025-1-306.1.pdf

Nwamekwe, C. O., Ewuzie, N. V., Igbokwe, N. C., Okpala, C. C., & U-Dominic, C. M. (2024). Sustainable Manufacturing Practices in Nigeria: Optimization and Implementation Appraisal. *Journal of Research in Engineering and Applied Sciences*, 9(3). <https://qtanalytics.in/journals/index.php/JREAS/article/view/3967>

Nwamekwe, C. O., Ewuzie, N. V., Igbokwe, N. C., U-Dominic, C. M., & Nwabueze, C. V. (2024). Adoption of Smart Factories in Nigeria: Problems, Obstacles, Remedies and Opportunities. *International Journal of Industrial and Production Engineering*, 2(2). Retrieved from <https://journals.unizik.edu.ng/ijipe/article/view/4167>

Nwamekwe, C. O., Okpala, C. C., & Okpala, S. C., (2024). Machine Learning-Based Prediction Algorithms for the Mitigation of Maternal and Fetal Mortality in the Nigerian Tertiary Hospitals. *International Journal of Engineering Inventions*, 13(7), PP: 132-138. <https://www.ijeijournal.com/papers/Vol13-Issue7/1307132138.pdf>

Park, E. (2024). Service robots in hospitality and tourism before and during the covid-19: bibliometric analysis and research agenda. Sage Open, 14(2). <https://doi.org/10.1177/21582440241258281>

Popov, N. (2023). Ensuring sustainable development of enterprises based on lean production methodologies and six sigma. E3s Web of Conferences, 460, 09036. <https://doi.org/10.1051/e3sconf/202346009036>

Prasad, S., Rao, A., & Lanka, K. (2022). Analysing the barriers for implementation of lean-led sustainable manufacturing and potential of blockchain technology to overcome these barriers: a conceptual framework. *International Journal of Mathematical Engineering and Management Sciences*, 7(6), 791-819. <https://doi.org/10.33889/ijmems.2022.7.6.051>

Rahman, S. (2024). Digital k-12 stem education through human-robot interaction: investigation on prerequisites. *Digital*, 4(2), 461-482. <https://doi.org/10.3390/digital4020023>

Rosin, F., Forget, P., Lamouri, S., & Pellerin, R. (2019). Impacts of industry 4.0 technologies on lean principles. *International Journal of Production Research*, 58(6), 1644-1661. <https://doi.org/10.1080/00207543.2019.1672902>

Russo, M., Gautreau, E., Bonnet, X., & Laribi, M. (2023). Continuum robots: from conventional to customized performance indicators. *Biomimetics*, 8(2), 147. <https://doi.org/10.3390/biomimetics8020147>

Salins, S. (2024). Design of an improved layout for a steel processing facility using slp and lean manufacturing techniques. *International Journal on Interactive Design and Manufacturing (Ijidem)*, 18(6), 3827-3848. <https://doi.org/10.1007/s12008-024-01828-9>

Sekala, A. (2024). Selected issues, methods, and trends in the energy consumption of industrial robots. *Energies*, 17(3), 641. <https://doi.org/10.3390/en17030641>

Sergeeva, S. (2024). Implementation of lean manufacturing principles and fast structured logic methods in the organizational culture: addressing challenges and maximizing efficiency. *International Journal of Sustainable Development and Planning*, 19(3), 1195-1201. <https://doi.org/10.18280/ijsdp.190337>

Sordan, J., Oprime, P., Pimenta, M., Lombardi, F., & Chiabert, P. (2021). Symbiotic relationship between robotics and lean manufacturing: a case study involving line balancing. *The TQM Journal*, 34(5), 1076-1095. <https://doi.org/10.1108/tqm-03-2021-0073>

Sousa, J. (2024). A bibliometric study of lean manufacturing and its relationship with sustainability. *Revista De Gestão E Secretariado*, 15(4), e3395. <https://doi.org/10.7769/gesec.v15i4.3395>

Stedman, H., Koçer, B., Kovač, M., & Pawar, V. (2022). Vrtab-map: a configurable immersive teleoperation framework with online 3d reconstruction., 104-110. <https://doi.org/10.1109/ismar57072.2022.00029>

Thoumy, M., Jobin, M., Baroud, J., & Khalil, C. (2022). Impact of lean principles on operational performance in high uncertainty. *International Journal of Productivity and Performance Management*, 72(9), 2697-2716. <https://doi.org/10.1108/ijppm-10-2021-0614>

Tian, Y., Chang, Y., Arias, F., Nieto-Granda, C., How, J., & Carlone, L. (2022). Kimera-multi: robust, distributed, dense metric-semantic slam for multi-robot systems. *IEEE Transactions on Robotics*, 38(4), 2022-2038. <https://doi.org/10.1109/tro.2021.3137751>

Tsai, Y., Wadgaonkar, C., Chun, B., & Knight, H. (2022). How service robots can improve workplace experience: camaraderie, customization, and humans-in-the-loop. *International Journal of Social Robotics*, 14(7), 1605-1624. <https://doi.org/10.1007/s12369-022-00898-7>

Tung, V. and Au, N. (2018). Exploring customer experiences with robotics in hospitality. *International Journal of Contemporary Hospitality Management*, 30(7), 2680-2697. <https://doi.org/10.1108/ijchm-06-2017-0322>

Varela, L., Araújo, A., Ávila, P., Castro, H., & Putnik, G. (2019). Evaluation of the relation between lean manufacturing, industry 4.0, and sustainability. *Sustainability*, 11(5), 1439. <https://doi.org/10.3390/su11051439>