

Content lists available at [Indonesia Academia Research Society](#)

International Journal of Industrial Engineering, Technology & Operations Management

Journal homepage: ejournals.indoacademia-society.com/ijietom

Review Article

Application of Machine Learning in Predicting Emergency Obstetric Cases in Sub-Saharan Africa: An Early Appraisal

Nkemakonam Chidiebube Igbokwe ^{a,*} and Charles Onyeka Nwamekwe ^a

^a Department of Industrial and Production Engineering, Faculty of Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria.
 * Correspondence: nc.igbokwe@unizik.edu.ng (N.C.I.)

Article History

Received 3 March 2025

Revised 22 April 2025

Accepted 2 June 2025

Available Online 30 June 2025

Keywords:

Machine Learning
 Predictive Modelling
 Maternal Health
 Healthcare Analytics
 Informatics
 Obstetric Complications

Abstract

This study investigates the effectiveness of machine learning (ML) in predicting emergency obstetric emergencies in Sub-Saharan Africa to improve maternal health outcomes. By examining the relevant literature, the study highlights issues that impede efficient decision-making and interventions, such as a lack of high-quality healthcare data. While machine learning models such as logistic regression, decision trees, support vector machines, neural networks, and random forests can achieve high accuracy in controlled environments, they face practical challenges, including inconsistent data quality, limited access to technology, and a shortage of trained personnel. For ML to be implemented equitably, ethical factors such as algorithmic bias and data privacy are essential. The transformative potential of machine learning in emergency obstetric care is highlighted by its benefits in early detection, individualized care, resource management, and data-driven decision-making. To fully reap these advantages, however, implementation issues and data quality must be resolved. The rapid expansion of biomedical data calls for innovative approaches to help healthcare professionals effectively analyse large datasets and reach well-informed conclusions. To maximize resource allocation, enhance patient care, and continually improve clinical outcomes, future research should focus on developing novel machine learning algorithms, improving data integration and interoperability, and fostering a data-driven culture.

Copyright: © 2025 by the authors. Submitted for possible open-access publication under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Emergency obstetric cases continue to be a significant contributor to maternal morbidity and mortality in sub-Saharan Africa. Patients with emergency obstetric cases are prone to a rapid clinical deterioration, leading to emergency hospital admissions. Despite advances in medical science and healthcare, many emergency obstetric cases are still not detected early enough, leading to life-threatening situations. Sub-Saharan Africa and other healthcare systems with limited resources make this situation much worse.

Machine learning algorithms can play a significant role in early detection, intervention, and the minimization of maternal emergency cases. Predictive modeling with machine learning in emergency obstetric cases is a proactive step towards identifying patients at risk of bad outcomes. Because machine learning can stratify patients by risk, it makes it easier to allocate resources

efficiently, thereby improving patient outcomes. This means it will directly affect the cost, time, and quality of patient treatment.

A key component of artificial intelligence is machine learning, which uses data, learns from it, and then applies that knowledge to make predictions on its own (Kim et al., 2023). Gaining useful information from health data is the main challenge, as computer power and data become more widely available (Maleki et al., 2020).

Because of their enormous potential to aid in decision-making, machine learning algorithms have become more widely recognized in the health care sector (Steve Barth, 2023). According to Chung et al. (2022), in the management of emergency cases, machine learning algorithms can support the mining and interpretation of complex data, stratification of patient diagnoses, and provision of personalized care. The study also suggested that a regulatory framework is required before the

algorithms can be used in clinical settings to improve clinical decision-making. Gangil et al., (2022) used Machine Learning algorithm to predict the clinical outcomes of radiotherapy for squamous cell carcinoma patients. The developed algorithm was able to predict several clinically relevant outcomes, and with additional clinical validation, could facilitate recognition of novel prognostic factors in head and neck squamous cell carcinoma.

Raita et al., (2019), used machine learning models to predict clinical outcomes in emergency department triage. The study found that applying modern machine learning models greatly enhances clinicians' triage decision-making, thereby improving clinical care and optimizing resource utilization. Because machine learning can process enormous volumes of complicated data, it is clear that its application in the health care sector is viewed as a viable alternative to traditional approaches for clinical predictions (Wu et al., 2020).

Predictive modeling through machine learning in emergency obstetric cases is a proactive step towards identifying patients at risk of adverse outcomes. As a result, it will directly influence costs, efficient resource utilization, time, and the quality of patient care, because machine learning can stratify patients by risk and thereby facilitate the efficient allocation of resources, thereby improving patient outcomes. Thus, this paper is described as an early appraisal because the research area in sub-Saharan Africa is still young, and little work has been done to date. This paper aims to summarize the preliminary work done by researchers in predicting emergency obstetric cases using machine learning algorithms. This was done to assess the field's research, identify knowledge gaps, and compile ideas for its future.

The evaluation covers a ten-year period, and all published research on the topic was cited. The literature review considered only articles indexed in the Web of Science, PubMed, Google Scholar, and SCOPUS databases.

2. Overview of Machine Learning

A basic overview of machine learning is provided in this section to help readers gain the fundamental knowledge needed to better appreciate the rest of the review. Machine learning is a branch of artificial intelligence that gives computers the ability to reason and acquire new skills independently (Alzubi et al., 2018). It enables computers to learn without explicit programming by using vast, complex datasets (Senders et al., 2018).

In this new era of "big data," machine learning continues to develop and is seen as the powerhouse (Misilmani & Naous, 2019; Naqa & Murphy, 2015). Science, technology, engineering, and medicine are just a few of the many research areas that fall under the purview of the multidisciplinary discipline of machine learning (Alzubi et al., 2018; Naqa & Murphy, 2015).

In general terms, there are three categories of machine learning: reinforcement learning, unsupervised learning, and supervised learning. In supervised learning, what a correct output looks like is already known (Misilmani & Naous, 2019), data is intended to "supervise" or train algorithms for data classification and accurate outcome prediction. By using labeled inputs and outputs, the model can be trained over time, and its accuracy can be evaluated. They are developed utilizing a dataset that has several variables and a pertinent outcome (Sidey-Gibbons & Sidey-Gibbons, 2021). Prediction using historical data finds application in supervised learning (Alzubi et al., 2018).

There has been a significant upsurge in the application of machine learning (ML) in healthcare, as evidenced by numerous studies demonstrating the field's promise in obstetrics. A review of the relevant literature reveals several key points:

Limited availability and quality of healthcare data pose a significant challenge in Sub-Saharan Africa (Byumbwe & Mtshali, 2018). This scarcity of data hampers the ability to make informed decisions and implement effective healthcare interventions. The lack of comprehensive, reliable healthcare data affects various aspects of healthcare delivery, including disease management, treatment efficacy assessment, and resource allocation. Without robust data, healthcare systems struggle to address critical health issues and provide optimal care to populations in need (Bello et al., 2021; Lubaki et al., 2022).

Inadequate healthcare data also hinders efforts to address specific health concerns prevalent in the region, such as cancer pain management Magboh, (2023), neonatal care quality Mersha, (2024), and snakebite treatment efficacy (Ainsworth et al., 2020). The absence of comprehensive data on these critical health issues limits the development of targeted interventions and the improvement of patient outcomes. Furthermore, the challenges in data availability extend to areas like mental health integration Muwanguzi et al., (2023), pediatric oncology training Apple & Lovvorn, (2020), and telemedicine implementation Joseph, (2024), impacting the overall effectiveness of healthcare systems in Sub-Saharan Africa.

Efforts to enhance healthcare data quality and availability are crucial for addressing health disparities and improving patient care in the region. Initiatives to improve data collection, storage, and analysis are essential to strengthen healthcare systems and drive evidence-based decision-making (Dubbink et al., 2018; Lee et al., 2023). By addressing the challenges of healthcare data in Sub-Saharan Africa, significant strides can be made toward better health outcomes and reduced disease burden in the region (Akoko, 2023; Basa, 2023).

These are essential in healthcare research, as they facilitate the prediction of various outcomes and risks. Riley et al., (2020) have demonstrated the application of

ML models, such as logistic regression, decision trees, support vector machines (SVM), and neural networks, in predicting obstetric outcomes. These models enable healthcare professionals to forecast individual outcomes and assess risks, aiding in diagnostic and prognostic predictions. The use of deep learning models for healthcare predictions has been increasing, with a focus on accuracy, reliability, and ethical considerations, including bias mitigation (Baji, 2024). Understanding factors influencing healthcare avoidance, such as early maladaptive schemas and betrayal trauma, is important for developing effective predictive models for healthcare decision-making (Rastegar, 2024).

The interpretability and fairness evaluation of deep learning models in healthcare applications are also important for establishing trust and comprehending model predictions (Meng et al., 2022). The development of optimized feature selection methods using ensemble classifiers in software defect prediction for healthcare systems emphasizes on the importance of refining predictive models for accurate outcomes (Mohammed et al., 2022).

Studies have shown that ML models have the capability to predict emergency obstetric cases with varying degrees of accuracy. For example, Martínez-Lacalzada et al., (2021) conducted a study utilizing neural networks to predict preeclampsia, achieving an accuracy rate of 85%. This research highlights the potential of ML models in forecasting obstetric outcomes, demonstrating their effectiveness in predictive analytics within the healthcare domain. The use of predictive models in healthcare has gained uncommon attention, with a focus on enhancing accuracy, reliability, and interpretability (Au et al., 2020). Understanding the factors influencing healthcare avoidance and developing effective predictive models are crucial for informed decision-making in healthcare settings (Simon et al., 2019). The concatenation of machine learning-based prediction models for high-need high-cost patients using clinical and claims data showcases the potential for personalized and efficient healthcare delivery (Biolek & Biolek, 2018).

3. Results and Discussions

3.1. Machine Learning Applications

The application of ML in predicting emergency obstetric cases in Sub-Saharan Africa is still in its nascent stages. Preliminary results from existing studies indicate promising outcomes but also highlight important challenges. Accuracy and reliability are very important aspects of ML models, particularly in healthcare applications. Studies have indicated that ML models, including neural networks and support vector machines (SVM), exhibit high accuracy rates in controlled settings. On the other hand, concerns arise regarding their reliability in real-world scenarios, especially in regions like Sub-Saharan Africa where data quality may be

inconsistent (Wang et al., 2020). While studies have demonstrated high accuracy rates in controlled environments, the real-world application of ML models in Sub-Saharan Africa poses challenges due to data quality issues. Ensuring the reliability of ML models in such settings requires robust validation processes and continuous monitoring to address potential biases and inaccuracies that may arise from inconsistent data quality (Mughal et al., 2022).

The implementation of machine learning models in healthcare systems in Sub-Saharan Africa encounters several challenges that hinder their effective deployment. These hurdles include limited access to technology, a shortage of trained personnel, and deficiencies in infrastructure (Doat et al., 2019). While studies have demonstrated the potential of ML models in healthcare, particularly in predicting outcomes and improving patient care, the practical application of these models in real-world settings faces significant obstacles in the Sub-Saharan African context.

Ethical considerations play a very important role in the implementation of ML models in healthcare systems, particularly in regions like Sub-Saharan Africa. Issues such as data privacy and the potential for algorithmic bias must be carefully addressed to ensure that ML applications are not only effective but also equitable (Chukwuere et al., 2022). The ethical implications of using ML models in healthcare are multifaceted and require careful consideration. For example, Elmi (2024), critically analyzed the challenges and ethical issues surrounding the use of ML in cervical cancer diagnosis, emphasizing the importance of responsible ML application in healthcare. And, Cina (2024), highlighted the ethical considerations in advancing spine care through AI and machine learning, emphasizing the need for ethical frameworks to guide their development and use. Addressing ethical considerations in the implementation of ML models in healthcare systems demands adherence to ethical frameworks, continuous monitoring, multidisciplinary governance, education, and regulatory compliance (Sharma, 2024).

3.2. Machine Learning Models

Several ML models have been explored for predicting emergency obstetric cases. Logistic regression is a widely used statistical method that serves as a baseline model in various fields, including healthcare, due to its simplicity and interpretability. It plays a crucial role in identifying key predictors of various outcomes, particularly in emergency cases. Logistic regression models are valuable tools for binary classification tasks and are often used to evaluate the significance of predictors in predicting specific outcomes. In the study by Hofmann (2024), logistic regression was employed to predict 30-day in-hospital mortality in surgical patients using comprehensive perioperative data.

The model demonstrated the potential to identify key factors associated with mortality, providing valuable insights for clinical decision-making. Decision trees are a valuable tool in machine learning due to their interpretability and ability to handle complex interactions between variables. They have been widely used in studies to classify high-risk obstetric cases, providing insights into the key predictors of such cases. Decision trees offer a transparent way to understand the decision-making process and identify the most influential factors in predicting outcomes. In a study by Ranzato & Zanella (2020), the abstract interpretation of decision tree ensemble classifiers was explored to verify the robustness and stability properties of decision tree models.

Support Vector Machines (SVM) are powerful machine learning models known for their effectiveness in high-dimensional spaces and their ability to handle complex interactions between variables. They have been widely employed in various studies, including predicting outcomes such as preeclampsia and foetal distress in healthcare applications (Hafiz, 2024).

Random Forests (RF) are a widely used ensemble learning method known for their ability to enhance predictive performance and reduce overfitting in various fields, including healthcare (Gabriel et al., 2022). In a study by Gabriel et al., (2022), RF was employed to predict the outpatient surgery end time and recovery room discharge at an ambulatory surgery center. The study emphasized the ensemble approach to RF, which combines predictions from multiple decision trees to improve accuracy and yield more reliable predictions than individual models. This highlights the effectiveness of RF in addressing classification problems and making precise predictions in healthcare settings.

RF has demonstrated versatility in different applications, such as predicting e-commerce inventory to prevent stockouts and enhancing oil recovery screening (Yousefzadeh, 2024). These examples underscore the adaptability and effectiveness of RF in handling diverse prediction tasks and enhancing decision-making. While RF offers benefits such as improved accuracy and reduced overfitting, it may require large training datasets to achieve optimal performance. Nonetheless, RF remains a valuable tool in machine learning due to its ability to handle complex interactions among variables and to provide accurate predictions across a wide range of applications.

3.3. Advantages of Machine Learning in Predicting Emergency Obstetric Cases

A critical component of healthcare that enables timely interventions and improved patient outcomes. ML models have proven to be valuable tools in analyzing large datasets efficiently, leading to the identification of early signs of complications that may not be easily recognizable through traditional methods (Gupta, 2024).

A study by Gupta, (2024) demonstrated the effectiveness of a Multilayer Perceptron (MLP) model in early sepsis detection among ICU patients. The research emphasized that prompt identification enabled by the MLP model could lead to the timely administration of appropriate treatments, ultimately enhancing patient outcomes and reducing sepsis-related mortality.

This study highlights the significance of utilizing ML models for early detection in critical healthcare settings. ML models have been successfully used in predicting the progression of chronic diseases Khalid (2024), analyzing histological images for early detection Al-Jabbar et al., (2023), and improving real-time disease detection in smart healthcare systems (Zihad et al., 2024). These applications showcase the versatility and efficacy of ML models in early detection across various medical fields. ML models offer substantial benefits for early detection; however, they may require extensive training datasets to achieve optimal performance. Despite this requirement, the capability of ML models to rapidly analyze complex data and identify early warning signs of complications makes them indispensable tools in healthcare, ultimately leading to improved patient outcomes through timely interventions.

Personalized care in healthcare is an important approach that aims to tailor interventions to individual patients based on their unique characteristics and needs. By predicting the likelihood of emergency cases, healthcare providers can proactively identify potential complications and deliver personalized interventions, ultimately leading to improved outcomes (Adeghe, 2024). In a study by Adege (2024), the use of wearable technology in healthcare was explored to monitor patient health and enhance outcomes. The personalized approach enabled by wearable technology was found to enhance the effectiveness of interventions and improve overall patient outcomes.

This study emphasizes the importance of personalized care in optimizing patient health and well-being. Personalized care has been shown to have a high impact on treatment efficacy and patient adherence. By considering individual characteristics and preferences, healthcare providers can design more effective treatment plans that are tailored to each patient, leading to improved adherence and overall health outcomes (Ibeh, 2024). The integration of machine learning and big data analytics in healthcare systems has also been instrumental in enabling personalized care. By analyzing large datasets, healthcare providers can gain deeper insights into disease patterns, treatment efficacy, and patient behaviors, enabling more personalized and effective care (Zihad et al., 2024).

Resource optimization in healthcare is crucial for efficiently allocating resources and delivering timely, appropriate care to high-risk patients. Predictive models play a vital role in this process by analyzing vast amounts of data quickly and accurately, enabling healthcare providers to identify early signs of complications and

allocate resources more effectively (Zain, 2024). In a study by Zain (2024), multi morbidity was investigated as a predictor of health service utilization in primary care among the Catalan population.

The study emphasized the importance of enhanced risk assessment in clinical management, helping health professionals optimize their agendas and resource allocation, ultimately leading to improved patient outcomes. Machine learning-based risk stratification tools have been developed to predict in-hospital mortality of intensive care unit patients with heart failure, supporting clinicians in assessing individual patients and delivering personalized treatment (Yin et al., 2023). By leveraging artificial intelligence and machine learning, healthcare providers can optimize resource allocation and enhance patient care through proactive interventions and predictive modelling (Rongali et al., 2020).

Data-driven decisions are increasingly important in modern healthcare, empowering healthcare providers to make well-informed, precise decisions through data analysis and insights. ML offers a data-driven approach to decision-making, reducing the reliance on subjective judgment and potentially enhancing the accuracy of diagnoses and interventions (Zihad et al., 2024). In a study by Zihad et al., (2024), the integration of machine learning and big data analytics in smart healthcare systems was investigated for real-time disease detection.

The study emphasized the transformative potential of ML in healthcare, enabling proactive, data-driven decision-making. By utilizing advanced technologies and data analytics, healthcare providers can optimize resource allocation, improve patient care, and enhance outcomes through informed decision-making. Data-driven decision-making has proven instrumental in various healthcare applications, such as predictive analytics for patient health outcomes Adegne (2024), personalized care in pharmacy practice Shuvo et al., (2023), and the diagnosis of heart failure using artificial intelligence (Choi et al., 2020).

These studies demonstrate the effectiveness of data-driven approaches in healthcare decision-making, enabling healthcare providers to deliver more personalized, efficient care to patients. While data-driven decisions offer substantial benefits in healthcare, continuous validation and refinement of these models are essential to ensure their accuracy and effectiveness in real-world healthcare settings. By leveraging advanced technologies and data analytics, healthcare providers can improve decision-making processes, optimize resource allocation, and ultimately enhance patient outcomes through personalized and data-driven interventions."

3.4. Knowledge Gap and Future Perspectives

In recent years, the exponential growth of biomedical data has presented a serious challenge for healthcare

providers. The complexity and volume of data have surpassed the capabilities of traditional statistical techniques, making it increasingly difficult for doctors to extract meaningful patterns. Hospitals generate vast amounts of unstructured data daily, including genomics, imaging, free-text, and monitoring equipment data streams. This influx of data necessitates the development of novel methods to help healthcare providers efficiently analyze "big data" and make data-driven decisions.

The utilization of ML provides a data-driven approach to decision-making in healthcare, reducing reliance on subjective judgment and potentially improving the accuracy of diagnoses and interventions. ML algorithms can analyze large and complex datasets to extract valuable insights, identify patterns, and predict outcomes. By leveraging ML techniques, healthcare providers can make informed decisions based on data-driven insights, leading to more precise diagnoses, personalized treatment plans, and improved patient outcomes.

To address the knowledge gap in healthcare decision-making, Senders et al., (2018) emphasized the importance of implementing novel methods to efficiently analyze big data and assist healthcare providers in making data-driven decisions. By harnessing the power of ML and advanced analytics, healthcare organizations can optimize resource allocation, enhance patient care, and improve clinical outcomes. Future research should focus on developing innovative ML algorithms, enhancing data integration and interoperability, and promoting a data-driven culture in healthcare settings to drive continuous improvement.

Despite the promising potential of ML in predicting emergency obstetric cases, several knowledge gaps and challenges need to be addressed:

Data quality and availability are crucial factors in healthcare decision-making, directly influencing the accuracy and reliability of analyses and interventions. The growing complexity and volume of biomedical data have posed challenges for healthcare providers in extracting relevant patterns and insights using traditional statistical techniques. Hospitals generate vast amounts of unstructured data daily, including genomics, imaging, free-text, and monitoring equipment data streams. This data influx highlights the need for robust data infrastructure to aid healthcare providers in efficiently analyzing big data and making data-driven decisions (Kwanya, 2021).

The incorporation of ML and advanced analytics in healthcare enables a data-driven approach to decision-making, reducing reliance on subjective judgment and potentially improving the accuracy of diagnoses and interventions. ML algorithms can analyze extensive, intricate data sets to extract valuable insights, identify patterns, and forecast outcomes. By using ML techniques, healthcare providers can make well-informed decisions based on data-driven insights,

leading to more precise diagnoses, personalized treatment plans, and improved patient outcomes (Delgado et al., 2018).

Future research should concentrate on developing innovative methods and technologies to enhance data collection, quality, and availability in healthcare settings. By enhancing data infrastructure and deploying advanced analytics tools, healthcare organizations can optimize resource allocation, improve patient care, and drive continuous enhancement in clinical outcomes. Collaborative endeavors and data sharing initiatives can further boost data quality and availability, empowering healthcare providers to make informed decisions and provide personalized care to patients based on their individual needs and risk profiles (Mikkelsen, 2024).

Model adaptability is crucial when utilizing machine learning (ML) in healthcare, especially in Sub-Saharan Africa. The unique demographic, socio-economic, and healthcare variables in this region necessitate the adaptation of ML models to effectively address the specific challenges and requirements of the local healthcare landscape (Dagold, 2024). The sustainability and effectiveness of developmental programs in Sub-Saharan Africa require a deep understanding of local dynamics and context-specific factors. Policymakers, development practitioners, and scholars can gain valuable insights into sustainability and development projects in Sub-Saharan Africa by adapting models and interventions to the specific needs and challenges of the region (Dagold, 2024).

Future research should focus on developing robust data infrastructure and innovative models tailored to the context of Sub-Saharan Africa. For instance, a model for designing and developing online health professions education courses in Sub-Saharan Africa highlights the need for empirically tested models that cater to the unique educational and healthcare requirements of the region (Keiller et al., 2023). In the context of healthcare, adapting models and interventions is crucial for addressing specific health challenges in Sub-Saharan Africa. For example, leveraging liquid biopsy technology to transform ovarian cancer outcomes in the region requires research, infrastructure development, stakeholder engagement, and international collaboration to bridge the diagnostic gap and improve patient outcomes (Kokori, 2024).

Interdisciplinary collaboration is crucial for the development and implementation of effective ML solutions in healthcare. The unique demographic, socio-economic, and healthcare variables in Sub-Saharan Africa necessitate adapting ML models to address the region's specific challenges and requirements. Collaboration between data scientists, healthcare professionals, and policymakers is essential to ensure that ML solutions are tailored to the context of Sub-Saharan Africa, enabling the development of effective and impactful solutions (Srivastava, 2023).

Research has emphasized the importance of interdisciplinary collaboration among ML researchers, clinical practitioners, and medical imaging experts to address challenges in explainability, fairness, and privacy in healthcare ML applications. By working together, experts from different disciplines can develop trustworthy ML solutions that meet the unique needs of healthcare settings (Srivastava, 2023). Fostering interdisciplinary collaboration and research initiatives is important to enhance the capabilities of ML-powered healthcare conversations.

By bringing together experts from diverse fields, such as healthcare, data science, and technology, innovative solutions can be developed to improve healthcare communication and patient outcomes (Chow, 2024). In the context of sustainable construction, it is essential to recognize the importance of interdisciplinary collaboration and strategic alignment among diverse stakeholders. By promoting innovative approaches and collaborative efforts, sustainable construction practices can be advanced, leading to positive environmental and societal impacts (Bhuiyan, 2024).

To address challenges and opportunities in biodiversity conservation, interdisciplinary collaboration among ecologists, conservation biologists, social scientists, policymakers, and local communities is crucial. By working together, stakeholders can develop comprehensive strategies to protect biodiversity and address the impacts of climate change on ecosystems (Dias, 2023).

Establishing ethical guidelines and legal frameworks for data use and ML implementation will be crucial in ensuring equitable and fair use of technology. Ethical and legal frameworks are crucial in guiding the development and implementation of ML solutions in healthcare. Establishing ethical guidelines and legal frameworks for data use and ML implementation is essential to ensure the equitable and fair use of technology in healthcare settings. Collaboration between data scientists, healthcare professionals, and policymakers is vital to develop and implement effective ML solutions that adhere to ethical standards and legal requirements (Morley et al., 2019).

In the context of artificial intelligence (AI) in healthcare, ethical and legal considerations are paramount to address challenges related to privacy, transparency, accountability, and bias. The ethical development of AI technologies, such as artificial amniotic sac and placenta technology, requires a roadmap that encompasses framing and societal dialogue, value-sensitive design, research ethics, and the development of an adequate moral and legal framework (Verweij et al., 2021). Identifying ethical and legal issues in elder care underscores the importance of addressing everyday care, end-of-life, and legal issues, as well as ethical-legal education and conflicts in healthcare settings. Collaborative efforts among stakeholders are

essential to navigate the complex ethical and legal landscape.

According to Senders et al., (2018) Senders et al.,(2018), the amount and intricacy of biomedical data have increased over the past few decades, making it impossible for a doctor to use traditional statistical techniques to extract all relevant data patterns. Hospitals produce large amounts of unstructured data, including genomics, imaging, free-text, and monitoring equipment data streams, daily. This means that novel methods are needed to help doctors efficiently analyze "big data."

4. Conclusions

The use of machine learning (ML) to predict emergency obstetric cases in Sub-Saharan Africa holds immense potential to improve maternal health outcomes. ML models, such as logistic regression, decision trees, support vector machines (SVM), and neural networks, can enhance predictive accuracy and support healthcare decision-making in obstetric care. However, the limited availability and quality of healthcare data in the region pose serious challenges, impacting the reliability and implementation of these models.

To realize the full potential of ML in this context, efforts must be made to improve data quality and availability, while addressing ethical considerations such as data privacy and algorithmic bias. Preliminary results indicate that ML models can achieve high accuracy in predicting emergency obstetric cases, but real-world implementation remains challenging due to infrastructural and resource limitations.

To achieve successful implementation, overcoming data quality issues, addressing ethical concerns, and enhancing healthcare infrastructure are essential steps. Continued research, investment in data management, and the development of robust, context-specific ML models are important in improving maternal health outcomes in the region.

Interdisciplinary collaboration is essential for developing and implementing ML solutions that meet the region's unique needs. Fostering partnerships among data scientists, healthcare professionals, and policymakers can yield innovative and impactful solutions. Establishing ethical guidelines and legal frameworks is vital to ensuring the equitable and fair use of technology and to addressing issues related to privacy, transparency, accountability, and bias.

Future research should focus on developing innovative ML algorithms, enhancing data integration and interoperability, and promoting a data-driven culture in healthcare settings. By addressing these challenges and leveraging the power of ML and advanced analytics, healthcare organizations in Sub-Saharan Africa can optimize resource allocation, enhance patient care, and improve clinical outcomes, ultimately leading to a notable reduction in maternal morbidity and mortality.

Author Contributions: Conceptualization, N.C.I. and C.O.N.; methodology, N.C.I.; software, N.C.I.; validation, C.O.N.; formal analysis, N.C.I. and C.O.N.; investigation, N.C.I. and C.O.N.; resources, N.C.I.; data curation, C.O.N.; writing—original draft preparation, N.C.I.; writing—review and editing, N.C.I. and C.O.N.; visualization, N.C.I.; project administration, N.C.I.; funding acquisition, N.C.I. All authors have read and agreed to the published version of the manuscript.

Author Initials

N.C.I. - Nkemakonam Chidiebube Igbokwe
C.O.N. - Charles Onyeka Nwamekwe

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Inform Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Nnamdi Azikiwe University, Nigeria, for supporting this research and publication. We also thank the reviewers for their constructive comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

Adeghe, E. (2024). A Review of Wearable Technology in Healthcare: Monitoring Patient Health and Enhancing Outcomes. *Open Access Research Journal of Multidisciplinary Studies*, 7(1), 142-148.

Ainsworth, S., Menzies, S., Casewell, N., & Harrison, R. (2020). An Analysis of Preclinical Efficacy Testing of Anti-venoms for sub-Saharan Africa: Inadequate Independent Scrutiny and Poor Quality Reporting are Barriers to Improving Snakebite Treatment and Management. *Plos Neglected Tropical Diseases*, 14(8). <https://doi.org/https://doi.org/10.1371/journal.pntd.0008579>

Akoko, L. (2023). Colorectal Cancer in Tanzania: The Current Status and Future Directions. *E-Cancer Medical Science*, 17. <https://doi.org/https://doi.org/10.3332/ecancer.2023.1564>

Al-Jabbar, M., Alshahrani, M., Senan, E., & Ahmed, I. (2023). Analyzing Histological Images using Hybrid Techniques for Early Detection of Multi-Class Breast Cancer Based on fusion features of CNN and Handcrafted. *Diagnostics*, 13(10), 1753. <https://doi.org/https://doi.org/10.3390/diagnostics13101753>

Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine Learning from Theory to Algorithms: An Overview. *Machine Learning from Theory to Algorithms: An Overview. Second National Conference on Computational Intelligence (NCCI 2018)*, 1-16. <https://doi.org/10.1088/1742-6596/1142/1/012012>

Apple, A., & Lovvorn, H. (2020). Wilms Tumor in Sub-Saharan Africa: Molecular and Social Determinants of a Global Pediatric Health Disparity. *Frontiers in Oncology*, 10. <https://doi.org/https://doi.org/10.3389/fonc.2020.606380>

Au, E., Francis, A., Bernier-Jean, A., & Teixeira-Pinto, A. (2020). Prediction Modeling—Part 1: Regression Modeling. *Kidney International*, 97(5), 877-844. <https://doi.org/https://doi.org/10.1016/j.kint.2020.02.007>

Baji, A. (2024). Enhancing Healthcare Predictions with Deep Learning Models. *Proceedings of the Aaai Conference on Artificial Intelligence*, 23729-23730. <https://doi.org/https://doi.org/10.1609/aaai.v38i21.30543>

Basa, M. (2023). The Impact of Covid-19 on Non-Communicable Disease Patients in sub-Saharan African Countries: Systematic Review. *PLoS ONE*, 19(6), 1-17. <https://doi.org/https://doi.org/10.1371/journal.pone.0293376>

Bello, K., Lepeleire, J., Kabinda, M., Bosongo, S., Dossou, J., Waweru, E., & Criel, B. (2021). The Expanding Movement of Primary Care Physicians Operating at the First Line of Healthcare Delivery Systems in Sub-Saharan Africa : A Scoping Review. *PLoS ONE*, 16(10). <https://doi.org/https://doi.org/10.1371/journal.pone.0258955>

Bhuiyan, M. (2024). Engineering and Design for Sustainable Construction: A Bibliometric Analysis of Current Status and Future Trends. *Sustainability*, 16(7), 2959. <https://doi.org/https://doi.org/10.3390/su16072959>

Biolek, D., & Biolek, Z. (2018). Predictive Models of Nanodevices. *IEEE Transactions on Nanotechnology*, 17(5), 906-913. <https://doi.org/https://doi.org/10.1109/tnano.2018.2812359>

Byumbwe, T., & Mtshali, N. (2018). Nursing Education Challenges and Solutions in sub-Saharan Africa: An Integrative Review. *BMC Nursing*, 17(1). <https://doi.org/https://doi.org/10.1186/s12912-018-0272-4>

Choi, D., Park, J., Ali, T., & Lee, S. (2020). Artificial Intelligence for the Diagnosis of Heart Failure. *NPJDigital Medicine*, 3(1). <https://doi.org/https://doi.org/10.1038/s41746-020-0261-3>

Chow, J. (2024). Generative Pre-Trained Transformer-Empowered Healthcare Conversations: Current Trends, Challenges, and Future Directions in Large Language Model-Enabled Medical Chatbots. *Biomedinformatics*, 4(1), 837-852. <https://doi.org/https://doi.org/10.3390/biomedinformatics4010047>

Chukwuere, P., Sehularo, P., & Manyedi, P. (2022). Conceptual Framework for the Psychosocial Management of Depression in Adolescents in the North West Province, South Africa. *SSRN Electronic Journal*. <https://doi.org/https://doi.org/10.2139/ssrn.4208657>

Chung, C. T., Bazoukis, G., Lee, S., Liu, Y., Liu, T., & Letsas, K. P. (2022). Machine learning techniques for arrhythmic risk stratification: a review of the literature. *International Journal of Arrhythmia*, 23(10), 1-13. <https://doi.org/https://doi.org/10.1186/s42444-022-00062-2>

Cina, A. (2024). Advancing Spine Care through AI and Machine Learning: Overview and Applications. *Efort Open Review*, 9(5), 422-433. <https://doi.org/https://doi.org/10.1530/efor-24-0019>

Dagold, M. (2024). The sustainability of developmental programs by the U.S. and China in Sub-Saharan Africa: a comparison of effectiveness. *SN Social Sciences*, 4(79). <https://doi.org/https://doi.org/10.1007/s43545-024-00879-9>

Delgado, J., Vandenberg, B., Kaplan, N., Neer, D., Wilson, G., D'Adamo, R., & Derner, J. (2018). A Network of Networks Connecting Food Security, The Environment, and Human Health. *Journal of Soil and Water Conservation*, 73(6), 158A-164A. <https://doi.org/https://doi.org/10.2489/jswc.73.6.158a>

Dias, R. (2023). Ecological Resilience in a Changing World: Challenges and Opportunities in Biodiversity Conservation in the Face of Climate Change. In *Editora*. <https://doi.org/https://doi.org/10.56238/alookdevelop1-176>

Doat, A., Negarandeh, R., & Hasanzadeh, M. (2019). Disclosure of Hiv Status to Children in Sub-Saharan Africa: A Systematic Review. *Medicina*, 55(8), 433. <https://doi.org/https://doi.org/10.3390/medicina5508043>

Dubbink, J., Verweij, S., Struthers, H., Ouburg, S., McIntyre, J., Morré, S., & Peters, R. (2018). Genitalchlamydia Trachomatisandneisseria Gonorrhoeaeinfections among Women in Sub-Saharan Africa: A Structured Review. *International Journal of STD & AIDS*, 29(8), 806-824. <https://doi.org/https://doi.org/10.1177/0956462418758224>

Elmi, A. (2024). A Comparative Analysis of Cervical Cancer Diagnosis using Machine Learning Techniques. *Indonesian Journal of Electrical Engineering and Computer Science*, 34(2), 1010. <https://doi.org/https://doi.org/10.11591/ijeevcs.v34.i2.pp1010-1023>

Gabriel, R., Harjai, B., Simpson, S., Goldhaber, N., Curran, B., & Waterman, R. (2022). Machine Learning-Based Models Predicting Outpatient Surgery and Recovery Room Discharge at an Ambulatory Surgery Center. *Anesthesia & Analgesia*, 135(1), 159-169. <https://doi.org/https://doi.org/10.1213/ane.0000000000006015>

Gangil, T., Shahabuddin, A. B., Rao, B. D., Palanisamy, K., Chakrabarti, B., & Sharan, K. (2022). Predicting clinical outcomes of radiotherapy for head and neck squamous cell carcinoma patients using machine learning algorithms. *Journal of Big Data*, 9(25), 1-19. <https://doi.org/https://doi.org/10.1186/s40537-022-00578-3>

Gupta, A. (2024). Early Detection of Sepsis in ICU Patients using a Multilayer Perceptron Model. <https://doi.org/https://doi.org/10.36227/techrxiv.171470511.16862135/v1>

Hafiz, R. (2024). Hybrid Whale Algorithm with Evolutionary Strategies and Filtering for High-Dimensional Optimization: Application to Microarray Cancer Data. *PLoS ONE*, 19(3), e0295643. <https://doi.org/https://doi.org/10.1371/journal.pone.0295643>

Hofmann, J. (2024). Predicting 30-Day in-Hospital Mortality in Surgical Patients: A Logistic Regression Model using Comprehensive Perioperative Data. <https://doi.org/https://doi.org/10.1101/2024.05.18.24307573>

Ibeh, C. (2024). Data Analytics in Healthcare: A Review of Patient-Centric Approaches and Healthcare Delivery. *World Journal of Advanced Research and Reviews*, 21(2), 1750-1760. <https://doi.org/https://doi.org/10.30574/wjarr.2024.21.2.0246>

Joseph, A. (2024). Increasing Pediatric Radiation Oncology Capacity in Sub-Saharan Africa using Technology: A Pilot of a Pediatric Radiation Oncology Virtual Training Course. *BMC Medical Education*, 24(1).

<https://doi.org/https://doi.org/10.1186/s12909-024-05313-5>

Keiller, L., Nyoni, C., & Van Wyk, C. (2023). A Model for Design of Online Health Professions Education Faculty Development Courses in sub-Saharan Africa. *BMC Medical Education*, 23(60), 1-10. <https://doi.org/https://doi.org/10.1186/s12909-023-04039-0>

Khalid, F. (2024). Predicting the Progression of Chronic Kidney Disease: A Systematic Review of Artificial Intelligence and Machine Learning Approaches. *Cureus*. <https://doi.org/https://doi.org/10.7759/cureus.60145>

Kim, H. Y., Cho, G. J., & Kwon, H. S. (2023). Applications of artificial intelligence in obstetrics. *Ultrasoundography*, 42, 2-9.

Kokori, E. (2024). Closing the Diagnostic Gap: Liquid Biopsy Potential to Transform Ovarian Cancer Outcomes in Sub-Saharan Africa. *Medicine*, 103(5), e37154. <https://doi.org/https://doi.org/10.1097/md.00000000000037154>

Kwanya, T. (2021). Publishing Trends on Research Data Management in Sub-Saharan Africa: A Bibliometrics Analysis. *lassist Quarterly*, 45(3-4). <https://doi.org/https://doi.org/10.29173/ij996>

Lee, C., Zhong, S., Lee, S., & Ndubisi, F. (2023). Designing for Health in Healthcare Deserts: A Medical City Master Planning Project in Nigeria. *Herd Health Environments Research & Design Journal*, 16(4), 313-334. <https://doi.org/https://doi.org/10.1177/19375867231181344>

Lubaki, J., Omole, O., & Francis, J. (2022). Glycaemic Control among Type 2 Diabetes Patients in Sub-Saharan Africa from 2012 to 2022: A Systematic Review and Meta-analysis. *Diabetology & Metabolic Syndrome*, 14(1). <https://doi.org/https://doi.org/10.1186/s13098-022-00902-0>

Magboph, V. (2023). Barriers to Optimal Management of Cancer Pain in Sub-Saharan Africa: A Scoping Review. *E Cancer Medical Science*, 17. <https://doi.org/https://doi.org/10.3332/ecancer.2023.1650>

Maleki, F., Ovens, K., Najafian, K., Forghani, B., Reinhold, C., & Forghani, R. (2020). Overview of Machine Learning Part 1: Fundamentals and Classic Approaches. *Neuroimaging Clinics of North America*, 30(4), e17-e32. <https://doi.org/10.1016/j.nic.2020.08.007>

Martínez-Lacalzada, M., Viteri-Noel, A., Manzano, L., Fabregat, M., Rubio-Rivas, M., García, S., & Zhilina, S. (2021). Predicting Critical Illness on Initial Diagnosis of Covid-19 Based on Easily Obtained Clinical Variables: Development and Validation of the Priority Model. *Clinical Microbiology and Infection*, 27(12), 1838-1844. <https://doi.org/https://doi.org/10.1016/j.cmi.2021.07.006>

Meng, C., Trinh, L., Xu, N., Enouen, J., & Liu, Y. (2022). Interpretability and Fairness Evaluation of Deep Learning Models on Mimic-Iv Dataset. *Scientific Reports*, 12(1). <https://doi.org/https://doi.org/10.1038/s41598-022-11012-2>

Mersha, A. (2024). Barriers and Enablers of Quality High-Acuity Neonatal Care in Sub-Saharan Africa: Protocol for a Synthesis of Qualitative Evidence. *BMJ Open*, 14(3), e081904. <https://doi.org/https://doi.org/10.1136/bmjopen-2023-081904>

Mikkelsen, T. (2024). Living with Schizophrenia and Type 2 Diabetes and the Implication for Diabetes Self-Care: A Qualitative Study. *Journal of Clinical Nursing*, 33(5), 1862-1874. <https://doi.org/https://doi.org/10.1111/jocn.17001>

Misilmani, H. M. El, & Naous, T. (2019). Machine Learning in Antenna Design: An Overview on Machine Learning Concept and Algorithms. *2019 International Conference on High Performance Computing & Simulation (HPCS)*, 600-607.

Mohammed, S., Islam, S., Talukder, A., & Awal, A. (2022). Machine Learning Approaches for Predicting Hypertension and Its Associated Factors Using Population-Level Data From Three South Asian Countries. 9(March). <https://doi.org/https://doi.org/10.3389/fcvm.2022.839379>

Morley, J., Machado, C., Burr, C., Cowls, J., Taddeo, M., & Floridi, L. (2019). The Debate on the Ethics of AI in Health Care: A Reconstruction and Critical Review. *SSRN Electronic Journal*. <https://doi.org/https://doi.org/10.2139/ssrn.3486518>

Mughal, N., Khan, M., Khalil, K., Javed, K., Sajid, H., Naseer, N., & Hong, K. (2022). Eeg-Fhris-Based Hybrid Image Construction and Classification Using Cnn-Lstm. *Frontiers in Neurorobotics*, 16. <https://doi.org/https://doi.org/10.3389/fnbot.2022.873239>

Muwanguzi, P., Kuodi, P., Nabunya, R., & Gausi, B. (2023). Implementation and Effectiveness of Transgender Stigma Reduction Interventions in Sub-Saharan Africa: A Scoping Review. *Journal of Global Health Reports*, 7. <https://doi.org/https://doi.org/10.29392/001c.72080>

Naqa, I. El, & Murphy, M. J. (2015). Machine Learning in Radiation Oncology. In *Machine Learning in Radiation Oncology* (pp. 3-11). <https://doi.org/10.1007/978-3-319-18305-3>

Raita, Y., Goto, T., Faridi, M. K., Brown, D. F. M., & Jr, C. A. C. (2019). Emergency department triage prediction of clinical outcomes using machine learning models. *Critical Care*, 23(64), 1-13.

Ranzato, F., & Zanella, M. (2020). Abstract Interpretation of Decision Tree Ensemble Classifiers. *Proceedings of the Aaai Conference on Artificial Intelligence*, 5478-5486. <https://doi.org/https://doi.org/10.1609/aaai.v34i04.5998>

Rastegar, P. (2024). Understanding College Students' Healthcare Avoidance: From Early Maladaptive Schemas, through Healthcare Institutional Betrayal and Betrayal Trauma Appraisal of Worst Healthcare Experiences. *Healthcare*, 12(11), 1126. <https://doi.org/https://doi.org/10.3390/healthcare12111126>

Riley, R., Ensor, J., Snell, K., Harrell, F., Martin, G., Reitsma, J., & Smeden, M. (2020). Calculating the Sample Size Required for Developing a Clinical Prediction Model. *The BMJ*, 368(m441), 1-12. <https://doi.org/https://doi.org/10.1136/bmj.m441>

Rongali, S., Rose, A., McManus, D., Bajracharya, A., Kapoor, A., Granillo, E., & Yu, H. (2020). Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation. *Journal of Medical Internet Research*, 22(3), e16374. <https://doi.org/https://doi.org/10.2196/16374>

Senders, J. T., Zaki, M. M., Karhade, A. V., Chang, B., Gormley, W. B., Brookman, M. L., Smith, T. R., & Arnaout, O. (2018). An introduction and overview of machine learning in

neurosurgical care. *Acta Neurochirurgica*, 160(1), 29–38. <https://doi.org/10.1007/s00701-017-3385-8>

Sharma, A. (2024). Navigating the Ethical Landscape: Implementing Machine Learning in Smart Healthcare Informatics. *Indian Journal of Community Health*, 36(1), 149–152. <https://doi.org/https://doi.org/10.47203/ijch.2024.v36i01.024>

Shuvo, S., Symum, H., Ahmed, R., Yilmaz, Y., & Zayas-Castro, J. (2023). Multi-Objective Reinforcement Learning Based Healthcare Expansion Planning Considering Pandemic Events. *IEEE Journal of Biomedical and Health Informatics*, 27(6), 2760–2770. <https://doi.org/https://doi.org/10.1109/jbhi.2022.3187950>

Sidey-Gibbons, J. A. M., & Sidey-Gibbons, C. J. (2021). Machine learning in medicine: a practical introduction to natural language processing. *BMC Medical Research Methodology*, 21(1), 1–18. <https://doi.org/10.1186/s12874-021-01347-1>

Simon, G., Shortreed, S., & Coley, R. (2019). Positive Predictive Values and Potential Success of Suicide Prediction Models. *Jama Psychiatry*, 76(8), 868. <https://doi.org/https://doi.org/10.1001/jamapsychiatry.2019.1516>

Srivastava, M. (2023). Towards Trustworthy Machine Learning in Healthcare: Addressing Challenges in Explainability, Fairness, and Privacy through Interdisciplinary Collaboration. <https://doi.org/https://doi.org/10.31219/osf.io/6vmu5>

Steve Barth. (2023). *AI in Healthcare*. Foresee Medical.

Verweij, E., Proost, L., Laar, J., Frank, L., Obermann-Borström, S., Vermeulen, M., & Kingma, E. (2021). Ethical Development of Artificial Amniotic Sac and Placenta Technology: A Roadmap. *Frontiers in Pediatrics*, 9. <https://doi.org/https://doi.org/10.3389/fped.2021.793308>

Wang, S., Tommaso, S., Faulkner, J., Friedel, T., Kennepohl, A., Strey, R., & Lobell, D. (2020). Mapping Crop Types in Southeast India with Smartphone Crowdsourcing and Deep Learning. *Remote Sensing*, 12(18), 2957. <https://doi.org/https://doi.org/10.3390/rs12182957>

Wu, X., Yuan, X., Wang, W., Liu, K., Qin, Y., Sun, X., & Ma, W. (2020). Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension. *Hypertension*, 75, 1271–1278. <https://doi.org/10.1161/HYPERTENSIONAHA.119.13404>

Yin, Z., Huang, Y., & Chen, Q. (2023). Risk Factor Analysis and a New Prediction Model of Venous Thromboembolism after Pancreaticoduodenectomy. *BMC Surgery*, 23(1). <https://doi.org/https://doi.org/10.1186/s12893-023-01916-9>

Yousefzadeh, R. (2024). Application of Power-Law Committee Machine to Combine Five Machine Learning Algorithms for Enhanced Oil Recovery Screening. *Scientific Reports*, 14(1). <https://doi.org/https://doi.org/10.1038/s41598-024-59387-8>

Zain, Z. (2024). Leveraging Artificial Intelligence and Machine Learning to Optimize Enhanced Recovery after Surgery (Eras) Protocols. *Cureus*. <https://doi.org/https://doi.org/10.7759/cureus.56668>

Zihad, H., Mahfuzur, R., Arfan, U., & Abdul, A. (2024). Integrating Machine Learning and Big Data Analytics for Real-Time Disease Detection in Smart Healthcare Systems. *International Journal of Health and Medical*, 1(3), 16–27. <https://doi.org/https://doi.org/10.62304/ijhm.v1i3.162>